【題目】已知:如圖,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD與AC相交于點(diǎn)E,AB=9,cos∠BAC=,tan∠DBC=

求:(1)邊CD的長(zhǎng);

(2)△BCE的面積.

【答案】(1)CD=5;(2)

【解析】試題分析:(1先在RtABC中,由余弦定理求得AC的值,進(jìn)而理由勾股定理計(jì)算出BC,再在RtBCD中由正切定理解得CD的長(zhǎng);(2)通過(guò)做AB的平行線EH構(gòu)造出相似三角形,由相似三角形對(duì)應(yīng)邊成比例可求得線段EH的長(zhǎng),最后理由三角形面積公式即可求解.

試題解析:(1)在RtABC中,

,

BC=

RtBCD中, ,

CD=5

2)過(guò)點(diǎn)EEHBC,垂足為H,

∵∠ABC=BCD=90°,∴∠ABC+BCD=180°,CD//AB

∵∠EHC=ABC=90°,EH//AB,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AC∥x軸,點(diǎn)B在第四象限,AO平分∠BAC,AB交x軸于G,連OB,OC.

(1)判斷△AOG的形狀,并證明;
(2)如圖1,若BO=CO且OG平分∠BOC,求證:OA⊥OB;
(3)如圖2,在(2)的條件下,點(diǎn)M為AO上的一點(diǎn),且∠ACM=45°,若點(diǎn)B(1,﹣2),求M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,點(diǎn)D是△ABC的邊BC的中點(diǎn),DE⊥AC,DF⊥AB,垂足分別為E,F(xiàn),且BF=CE.

(1)求證:AE=AF;
(2)如圖2,若∠BAC=60°,△ABD的面積為4,連接AD交EF于M,連接BM、CM,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中所有面積為1的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的不等式(a-2)xa-2的解集是x>1,則a的取值范圍是(  )

A. a>1 B. a<1 C. a>2 D. a<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,過(guò)點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過(guò)翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),可得FGFD.(大小關(guān)系)

(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),猜想FG與FD的數(shù)量關(guān)系,并說(shuō)明理由.

(3)在圖②中,當(dāng)AB=8,BE=3時(shí),利用探究的結(jié)論,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點(diǎn),AE∥CD,CE∥AB,判斷四邊形ADCE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正三角形、正四邊形、正五邊形按如圖所示的位置擺放.如果∠3=30°,那么∠1+∠2=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x+3y-2=0,3x2×33y________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將放置于直角坐標(biāo)系中的三角板AOBO點(diǎn)順時(shí)針旋轉(zhuǎn)90°A1OB1.已知∠AOB=30°,B=90°,AB=1,則B1點(diǎn)的坐標(biāo)為(

A. () B. , C. ,) D (,

查看答案和解析>>

同步練習(xí)冊(cè)答案