【題目】已知:如圖,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD與AC相交于點(diǎn)E,AB=9,cos∠BAC=,tan∠DBC=.
求:(1)邊CD的長(zhǎng);
(2)△BCE的面積.
【答案】(1)CD=5;(2)
【解析】試題分析:(1)先在Rt△ABC中,由余弦定理求得AC的值,進(jìn)而理由勾股定理計(jì)算出BC,再在Rt△BCD中由正切定理解得CD的長(zhǎng);(2)通過(guò)做AB的平行線EH構(gòu)造出相似三角形,由相似三角形對(duì)應(yīng)邊成比例可求得線段EH的長(zhǎng),最后理由三角形面積公式即可求解.
試題解析:(1)在Rt△ABC中, .
∴,
∴BC=.
在Rt△BCD中, ,
∴CD=5.
(2)過(guò)點(diǎn)E作EH⊥BC,垂足為H,
∵∠ABC=∠BCD=90°,∴∠ABC+∠BCD=180°,∴CD//AB.
∴.
∵∠EHC=∠ABC=90°,∴EH//AB,∴ .
∴.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AC∥x軸,點(diǎn)B在第四象限,AO平分∠BAC,AB交x軸于G,連OB,OC.
(1)判斷△AOG的形狀,并證明;
(2)如圖1,若BO=CO且OG平分∠BOC,求證:OA⊥OB;
(3)如圖2,在(2)的條件下,點(diǎn)M為AO上的一點(diǎn),且∠ACM=45°,若點(diǎn)B(1,﹣2),求M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,點(diǎn)D是△ABC的邊BC的中點(diǎn),DE⊥AC,DF⊥AB,垂足分別為E,F(xiàn),且BF=CE.
(1)求證:AE=AF;
(2)如圖2,若∠BAC=60°,△ABD的面積為4,連接AD交EF于M,連接BM、CM,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中所有面積為1的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的不等式(a-2)x>a-2的解集是x>1,則a的取值范圍是( )
A. a>1 B. a<1 C. a>2 D. a<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,過(guò)點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過(guò)翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),可得FGFD.(大小關(guān)系)
(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),猜想FG與FD的數(shù)量關(guān)系,并說(shuō)明理由.
(3)在圖②中,當(dāng)AB=8,BE=3時(shí),利用探究的結(jié)論,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點(diǎn),AE∥CD,CE∥AB,判斷四邊形ADCE的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將放置于直角坐標(biāo)系中的三角板AOB繞O點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△A1OB1.已知∠AOB=30°,∠B=90°,AB=1,則B1點(diǎn)的坐標(biāo)為( )
A. (,) B. (,) C. (,) D (,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com