【題目】1)在如圖所示的數(shù)軸上,把數(shù)﹣2, ,4,2.5表示出來(lái),并用將它們連接起來(lái);

(2)假如在原點(diǎn)處放立一擋板(厚度不計(jì)),有甲、乙兩個(gè)小球(忽略球的大小,可看作一點(diǎn)),小球甲從表示數(shù)﹣2的點(diǎn)處出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿?cái)?shù)軸向左運(yùn)動(dòng);同時(shí)小球乙從表示數(shù)4的點(diǎn)處出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿?cái)?shù)軸向左運(yùn)動(dòng),在碰到擋板后即刻按原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

請(qǐng)從A,B兩題中任選一題作答.

A.當(dāng)t=3時(shí),求甲、乙兩小球之間的距離.

B.用含t的代數(shù)式表示甲、乙兩小球之間的距離.

【答案】(1)答案見解析(2)A.7;B.0<t≤2時(shí),6-t;t>2時(shí),3t-2.

【解析】試題分析:(1)先將各數(shù)表示在數(shù)軸上,然后按照數(shù)軸上越右的數(shù)越大用“<”號(hào)連接起來(lái)即可;

(2)甲球到原點(diǎn)的距離=甲球運(yùn)動(dòng)的路程+OA的長(zhǎng),乙球到原點(diǎn)的距離分兩種情況:(Ⅰ)當(dāng)0<t≤2時(shí),乙球從點(diǎn)B處開始向左運(yùn)動(dòng),一直到原點(diǎn)O,此時(shí)OB的長(zhǎng)度-乙球運(yùn)動(dòng)的路程即為乙球到原點(diǎn)的距離;(Ⅱ)當(dāng)t>2時(shí),乙球從原點(diǎn)O處開始向右運(yùn)動(dòng),此時(shí)乙球運(yùn)動(dòng)的路程-OB的長(zhǎng)度即為乙球到原點(diǎn)的距離;

A、當(dāng)t=3時(shí),根據(jù)上面的分析進(jìn)行計(jì)算即可得;

B、分0<t≤2t>2兩種情況進(jìn)行討論即可得.

試題解析:(1)如圖所示:

-2<-<<2.5<4

(2)∵甲球運(yùn)動(dòng)的路程為:1t=t,OA=2,∴甲球與原點(diǎn)的距離為:t+2;

乙球到原點(diǎn)的距離分兩種情況:

(Ⅰ)當(dāng)0<t≤2時(shí),乙球從點(diǎn)B處開始向左運(yùn)動(dòng),一直到原點(diǎn)O,

∵OB=4,乙球運(yùn)動(dòng)的路程為:2t=2t,∴乙球到原點(diǎn)的距離為:4-2t;

(Ⅱ)當(dāng)t>2時(shí),乙球從原點(diǎn)O處開始一直向右運(yùn)動(dòng),此時(shí)乙球到原點(diǎn)的距離為:2(t-2)=2t-4;

A、當(dāng)t=3時(shí),甲、乙兩小球之間的距離為:t+2+2t-4=3t-2=7;

B、分兩種情況:(Ⅰ)0<t≤2,甲、乙兩小球之間的距離為:t+2+4-2t=6-t;

(Ⅱ)t>2,甲、乙兩小球之間的距離為:t+2+2t-4=3t-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.

(1)已知:如圖1,四邊形是“等對(duì)角四邊形”, , , .求, 的度數(shù).

(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):

① 小紅畫了一個(gè)“等對(duì)角四邊形”(如圖2),其中, ,此時(shí)她發(fā)現(xiàn)成立.請(qǐng)你證明此結(jié)論.

② 由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.

(3)已知:在“等對(duì)角四邊形”中, ,AB=AD=4,.求∠D和對(duì)角線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20044月我國(guó)鐵路第5次大提速。假設(shè)Kl20次空調(diào)快速列車的平均速度提速后比提速前提高了44千米/時(shí),提速前的列車時(shí)刻表如下:

行駛區(qū)間

車次

起始時(shí)刻

到站時(shí)刻

歷時(shí)

全程里程

AB

K120

2:00

6:00

4小時(shí)

264千米

請(qǐng)你根據(jù)題目提供的信息,填寫提速后的列車時(shí)刻表,并寫出計(jì)算過(guò)程。

行駛區(qū)間

車次

起始時(shí)刻

到站時(shí)刻

歷時(shí)

全程里程

AB

K120

2:00

264千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn)是A(-2,-4,C(4,n),與y軸交于點(diǎn)B,與x軸交于點(diǎn)D

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)連結(jié)OA,OC,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,AB=AC,BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),兩邊PE、PF分別交ABAC于點(diǎn)E、F,給出的以下四個(gè)結(jié)論:①AE=CF; ②△EPF一定是等腰直角三角形; S四邊形AEPF=SABC;④當(dāng)∠EPFABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)始終有EF=AP。(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有_____.(寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,張明用17個(gè)邊長(zhǎng)為1的小正方形搭成了一個(gè)幾何體,然后他請(qǐng)王亮用其他同樣的小正方體在旁邊再搭一個(gè)幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無(wú)縫隙的大長(zhǎng)方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個(gè)小立方體,王亮所搭幾何體的表面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A1,2),B3,1),C﹣2﹣1).

1)在圖中作出ABC關(guān)于y軸對(duì)稱的A1B1C1

2)寫出A1,B1,C1的坐標(biāo),A1  ;B1   ;C1   .(直接寫出答案)

3A1B1C1的面積為       .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某單位職工的年齡(取正整數(shù))的頻率分布直方圖,根據(jù)圖中提供的信息,回答下列問題:

(1)該單位共有職工多少人?

(2)不小于38歲但小于44歲的職工人數(shù)占職工總?cè)藬?shù)的百分比是多少?

(3)如果42歲的職工有4人,那么年齡在42歲以上的職工有幾人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=5,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標(biāo)系,D是邊CB上的一個(gè)動(dòng)點(diǎn)(不與CB重合),反比例函數(shù)yk>0)的圖象經(jīng)過(guò)點(diǎn)D且與邊BA交于點(diǎn)E,連接DE

(1)連接OE,若EOA的面積為3,則k=___________;

(2)是否存在點(diǎn)D,使得點(diǎn)B關(guān)于DE的對(duì)稱點(diǎn)在OC上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案