【題目】(1)如圖1,這是一個五角星ABCDE,你能計算出∠A+B+C+D+E的度數(shù)嗎?為什么?(必須寫推理過程)

(2)如圖2,如果點B向右移動到AC上,那么還能求出∠A+DBE+C+D+E的大小嗎?若能結果是多少?(可不寫推理過程)

(3)如圖,當點B向右移動到AC的另一側時,上面的結論還成立嗎?

(4)如圖4,當點B、E移動到∠CAD的內部時,結論又如何?根據(jù)圖3或圖4,說明你計算的理由.

【答案】(1)∠A+B+C+D+E=180°;(2)成立;(3)成立;(4)A+B+C+D+E=180°.

【解析】

(1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和可得∠A+C=1,B+D=2,然后利用三角形的內角和定理列式即可得解;

(2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和可得∠A+D=1,在BCE中,利用三角形的內角和列式計算即可得解;

(3)根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和可得∠A+C=1,B+D=2,然后利用三角形的內角和定理列式即可得解;

(4)延長CEAD相交,根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和可得∠A+C=1,B+E=2,然后利用三角形的內角和定理列式即可得解.

1)如圖,由三角形的外角性質,∠A+C=1,B+D=2,

∵∠1+2+E=180°,

∴∠A+B+C+D+E=180°;

(2)如圖,由三角形的外角性質,∠A+D=1,

∵∠1+DBE+C+E=180°,

∴∠A+DBE+C+D+E=180°;

(3)如圖,由三角形的外角性質,∠A+C=1,B+D=2,

∵∠1+2+E=180°,

∴∠A+B+C+D+E=180°;

(4)如圖,延長CEAD相交,由三角形的外角性質,∠A+C=1,B+E=2,

∵∠1+2+D=180°,

∴∠A+B+C+D+E=180°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin∠C= ,BC=12,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進冰箱、彩電進行銷售,已知冰箱的進貨單價比彩電的進貨單價多400元,若商場用80 000元購進冰箱的數(shù)量與用64 000元購進彩電的數(shù)量相等.該商場冰箱、彩電的售貨單價如下表:

冰箱

彩電

售價(元/臺)

2500

2000

(1)分別求出冰箱、彩電的進貨單價.

(2)為了滿足市場需求,商場決定用不超過90 000元的資金采購冰箱、彩電共50臺。若該商場將購進的冰箱、彩電共50臺全部售出,獲得利潤為w元,為了使商場的利潤最大,該商場該如何購進冰箱、彩電,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將⊙O沿弦AB折疊,圓弧恰好經過圓心O,點P是優(yōu)弧 上一點,則∠APB的度數(shù)為(
A.45°
B.30°
C.75°
D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內角大小有關.當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.

(1)請根據(jù)下列圖形,填寫表中空格:

正多邊形邊數(shù)

3

4

5

6

正多邊形每個內角的度數(shù)

(2)如圖,如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形;

(3)正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加數(shù)學綜合素質測試,各項成績如下(單位:分)

數(shù)與代數(shù)

空間與圖形

統(tǒng)計與概率

綜合與實踐

學生甲

90

93

89

90

學生乙

94

92

94

86

(1)分別計算甲、乙成績的中位數(shù);

(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計與概率、綜合與實踐的成績按3:3:2:2計算,那么甲、乙的數(shù)學綜合素質成績分別為多少分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級學生開展踢毽子比賽活動,每班派5名同學參加,按團體總分多少排列名次,在規(guī)定時間內每人踢100個以上(100)為優(yōu)秀,下表是成績最好的甲班和乙班5名學生的比賽數(shù)據(jù)(單位:個)

1

2

3

4

5

總分

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

統(tǒng)計發(fā)現(xiàn)兩班總分相等,此時有同學建議,可以通過考查數(shù)據(jù)中的其他信息作為參考,請你解答下列問題:

(1)計算兩班的優(yōu)秀率;

(2)求兩班比賽數(shù)據(jù)的中位數(shù);

(3)估計兩班比賽數(shù)據(jù)的方差哪一個。

(4)根據(jù)以上三條信息,你認為應該把冠軍獎狀發(fā)給哪一個班?簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲同學用圖3-①所示的方法作出了點C,表示數(shù),在△OAB中,∠OAB=90°,OA=2,AB=3,且點O,A,C在同一數(shù)軸上,OB=OC.

(1)請說明甲同學這樣做的理由;

(2)仿照甲同學的作法,在圖3-②所給的數(shù)軸上描出表示-的點A.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-2x+6x軸交于點A,與y軸交于點B.

(1)A的坐標為________,點B的坐標為________.

(2)AOB的面積.

(3)直線AB上是否存在一點C(C與點B不重合),使AOC的面積等于AOB的面積?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案