【題目】學(xué)校6名教師和234名學(xué)生集體外出活動(dòng),準(zhǔn)備租用45座大車(chē)或30座小車(chē).若租用1輛大車(chē)2輛小車(chē)共需租車(chē)費(fèi)1000元;若租用2輛大車(chē)一輛小車(chē)共需租車(chē)費(fèi)1100元.
(1)求大、小車(chē)每輛的租車(chē)費(fèi)各是多少元?
(2)若每輛車(chē)上至少要有一名教師,且總租車(chē)費(fèi)用不超過(guò)2300元,求最省錢(qián)的租車(chē)方案.
【答案】(1)大車(chē)每輛的租車(chē)費(fèi)是400元、小車(chē)每輛的租車(chē)費(fèi)是300元;(2)最省錢(qián)的租車(chē)方案是:4輛大車(chē),2輛小車(chē)
【解析】
(1)設(shè)大車(chē)每輛的租車(chē)費(fèi)是x元、小車(chē)每輛的租車(chē)費(fèi)是y元.根據(jù)題意:“租用1輛大車(chē)2輛小車(chē)共需租車(chē)費(fèi)1000元”;“租用2輛大車(chē)一輛小車(chē)共需租車(chē)費(fèi)1100元”;列出方程組,求解即可;
(2)根據(jù)汽車(chē)總數(shù)不能小于(取整為6)輛,即可求出共需租汽車(chē)的輛數(shù);設(shè)租用大車(chē)m輛,則租車(chē)費(fèi)用Q(單位:元)是m的函數(shù),由題意得出400m+300(6-m)≤2300,得出取值范圍,分析得出即可.
解:(1)設(shè)大車(chē)每輛的租車(chē)費(fèi)是x元、小車(chē)每輛的租車(chē)費(fèi)是y元.
可得方程組,
解得.
答:大車(chē)每輛的租車(chē)費(fèi)是400元、小車(chē)每輛的租車(chē)費(fèi)是300元;
(2)由每輛汽車(chē)上至少要有1名老師,汽車(chē)總數(shù)不能大于6輛;
又要保證240名師生有車(chē)坐,汽車(chē)總數(shù)不能小于(取整為6)輛,
綜合起來(lái)可知汽車(chē)總數(shù)為6輛.
設(shè)租用m輛大型車(chē),則租車(chē)費(fèi)用Q(單位:元)是m的函數(shù),
即Q=400m+300(6-m);
化簡(jiǎn)為:Q=100m+1800,
依題意有:100m+1800≤2300,
∴m≤5,
又要保證240名師生有車(chē)坐,45m+30(6-m)≥240,解得m≥4,
所以有兩種租車(chē)方案,
方案一:4輛大車(chē),2輛小車(chē);
方案二:5輛大車(chē),1輛小車(chē).
∵Q隨m增加而增加,
∴當(dāng)m=4時(shí),Q最少為2200元.
故最省錢(qián)的租車(chē)方案是:4輛大車(chē),2輛小車(chē).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在A,B兩地之間有汽車(chē)站C站,客車(chē)由A地駛往C站,貨車(chē)由B地駛往A地.兩車(chē)同時(shí)出發(fā),勻速行駛.圖2是客車(chē)、貨車(chē)離C站的路程y1,y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距 千米;
(2)求兩小時(shí)后,貨車(chē)離C站的路程y2與行駛時(shí)間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車(chē)何時(shí)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)D坐標(biāo),并直接寫(xiě)出y1>y2時(shí)x的取值范圍;
(3)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一張矩形紙片ABCD進(jìn)行折疊,具體操作如下:
第一步:先對(duì)折,使AD與BC重合,得到折痕MN,展開(kāi);
第二步:再一次折疊,使點(diǎn)A落在MN的點(diǎn)A′處,并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BE,同時(shí),得到線段BA′,EA′,展開(kāi),如圖1;
第三步:再沿EA′所在的直線折疊,點(diǎn)B落在AD的點(diǎn)B′處,得到折痕EF,同時(shí)得到線段B′F,展開(kāi),如圖2.
(1)證明:∠ABE=30°;
(2)證明:四邊形BFB′E為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC與△A'B'C在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫(xiě)出B、B'的坐標(biāo):B______;B′______;
(2)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A'B'C內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為______;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市進(jìn)行“新城區(qū)改造建設(shè)”,有甲、乙兩種車(chē)參加運(yùn)土,已知5輛甲種車(chē)和2輛乙種車(chē)一次共可運(yùn)土64米,3輛甲種車(chē)和1輛乙種車(chē)一次共可運(yùn)土36米.
(1)求甲、乙兩種車(chē)每輛一次可分別運(yùn)土多少米;
(2)某公司派甲、乙兩種汽車(chē)共10輛參加運(yùn)土,且一次運(yùn)土總量不低于100米,求公司最多要派多少輛甲種汽車(chē)參加運(yùn)土.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x()天的售價(jià)與銷(xiāo)量的相關(guān)信息如下表:
時(shí)間(天) | ||
售價(jià)(元/件) | x+40 | 90 |
每天銷(xiāo)量(件) | 200-2x | 200-2x |
(1)求出y與x的函數(shù)關(guān)系式;
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天銷(xiāo)售利潤(rùn)不低于4800元?請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直徑為AB的半圓內(nèi),劃出一塊三角形區(qū)域,如圖所示,使三角形的一邊為AB,頂點(diǎn)C在半圓圓周上,其它兩邊分別為6和8,現(xiàn)要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中D、E在AB上,如圖24-94的設(shè)計(jì)方案是使AC=8,BC=6.
(1)求△ABC的邊AB上的高h.
(2)設(shè)DN=x,且,當(dāng)x取何值時(shí),水池DEFN的面積最大?
(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85的M處有一棵大樹(shù),問(wèn):這棵大樹(shù)是否位于最大矩形水池的邊上?如果在,為了保護(hù)大樹(shù),請(qǐng)?jiān)O(shè)計(jì)出另外的方案,使內(nèi)接于滿(mǎn)足條件的三角形中欲建的最大矩形水池能避開(kāi)大樹(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com