【題目】如圖,正方形ABCD的邊長(zhǎng)為a,對(duì)角線AC和BD相交于點(diǎn)O,正方形A1B1C1O的邊OA1交AB于點(diǎn)E,OC1交BC于點(diǎn)F,正方形A1B1C1O繞O點(diǎn)轉(zhuǎn)動(dòng)的過(guò)程中,與正方形ABCD重疊部分的面積為_____(用含a的代數(shù)式表示)
【答案】a2.
【解析】
由題意得OA=OB,∠OAB=∠OBC=45°又因?yàn)?/span>∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根據(jù)ASA可證△AOE≌△BOF,由全等三角形的性質(zhì)可得S△AOE=S△BOF,可得重疊部分的面積為正方形面積的,即可求解.
解:在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°,
∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,
∴∠AOE=∠BOF.
在△AOE和△BOF中 ,
∴△AOE≌△BOF(ASA),
∴S△AOE=S△BOF,
∴重疊部分的面積,
故答案為:a2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某司機(jī)在東西路上開(kāi)車接送乘客,他早晨從A地出發(fā),(去向東的方向正方向),到晚上送走最后一位客人為止,他一天行駛的的里程記錄如下(單位:㎞)
+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14
(1) 若該車每百公里耗油 3 L ,則這車今天共耗油 多少升?
(2) 據(jù)記錄的情況,你能否知道該車送完最后一個(gè)乘客是,他在A地的什么方向?距A地多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 已知反比例函數(shù)的圖象的一支位于第一象限.
(1)該函數(shù)圖象的另一分支位于第_____象限,m的取值范圍是____________;
(2)已知點(diǎn)A在反比例函數(shù)圖象上,AB⊥x軸于點(diǎn)B,△AOB的面積為3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)D,E分別是△ABC的BC,AC邊的中點(diǎn).
(1)如圖①,若AB=10,求DE的長(zhǎng);
(2)如圖②,點(diǎn)F是AB邊上的一點(diǎn),FG//AD,交ED的延長(zhǎng)線于點(diǎn)G.求證:AF=DG
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃購(gòu)買一批排球和足球,已知購(gòu)買2個(gè)排球和1個(gè)足球共需321元,購(gòu)買3個(gè)排球和2個(gè)足球共需540元.
(1)求每個(gè)排球和足球的售價(jià);
(2)若學(xué)校計(jì)劃購(gòu)買這兩種球共50個(gè),總費(fèi)用不超過(guò)5500元,那么最多可購(gòu)買足球多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一個(gè)由若干同樣大小的正方體搭成的幾何體俯視圖,小正方形中的數(shù)字表示在該位置的立方體的個(gè)數(shù).
(1)請(qǐng)你畫出它的從正面看和從左面看的形狀圖.
(2)如果每個(gè)立方體的棱長(zhǎng)為2cm,則該幾何體的表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料并解決問(wèn)題:
求1+2+22+23+…...+22014的值,另S=1+2+22+23+…...+22014,
等式兩邊同時(shí)乘2,得2S=2+22+23+.......+22014+22015
兩式相減,得2S - S = 22015 -1 所以S = 22015 - 1
依據(jù)以上計(jì)算方法,計(jì)算:1 + 3 + 32 + ..... + 32019
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題:
(1)8+(-10)+(-2)-(-5)
(2)
(3)
(4)-
(5)
(6)
(7)()×4
(8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=2∠B,(1)如圖①,當(dāng)∠C=90°,AD為∠ABC的角平分線時(shí),在AB上截取AE=AC,連接DE,易證AB=AC+CD.請(qǐng)證明AB=AC+CD;
(2)①如圖②,當(dāng)∠C≠90°,AD為∠BAC的角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論,不要求證明;
②如圖③,當(dāng)∠C≠90°,AD為△ABC的外角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com