精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將矩形紙片ABCD置于直角坐標系中,點A(4,0),點B(0,3),點D(異于點B、C)為邊BC上動點,過點O、D折疊紙片,得點B′和折痕OD.過點D再次折疊紙片,使點C落在直線DB′上,得點C′和折痕DE,連接OE,設BD=t.

(1)當t=1時,求點E的坐標;
(2)設S四邊形OECB=s,用含t的式子表示s(要求寫出t的取值范圍);
(3)當OE取最小值時,求點E的坐標.

【答案】
(1)

解:由折疊的性質可知,∠ODB=∠ODB′,∠EDC=∠EDC′,

∴∠ODE=90°,

∴∠BDO+∠CDE=90°,又∠BDO+∠BOD=90°,

∴∠BOD=∠CDE,

∵BD=t=1,BC=4,

∴CD=3,又OB=3,

∴OB=CD,

在△BOD和△CDE中,

,

∴△BOD≌△CDE,

∴CE=BD=1,

∴AE=AC﹣CE=2,

∴點E的坐標為(4,2)


(2)

解:∵BD=t,

∴DC=BC﹣BD=4﹣t,

由(1)得,∠BOD=∠CDE,又∠B=∠C=90°,

∴△ODB∽△DCE,

,即 ,

解得,CE= t2+ t,

∴S= ×(CE+OB)×BC= ×( t2+ t+3)×4,

∴S= t2+ t+6(0<t<4)


(3)

解:在Rt△OEA中,OE2=OA2+AE2=42+AE2

∴當AE最小時,OE最小,

由(2)得,CE= t2+ t,

∴AE=AC﹣CE= t2 t+3= (x﹣2)2+ ,

當t=2時,AE的最小值為 ,

此時點E的坐標為(4,


【解析】(1)根據折疊的性質和全等三角形的判定定理證明△BOD≌△CDE,求出CE,計算出AE,得到點E的坐標;(2)根據相似三角形的性質用t表示出CE,根據梯形的面積公式用t表示S;(3)根據二次函數的性質求出AE的最小值,求出點E的坐標.
【考點精析】解答此題的關鍵在于理解相似三角形的性質的相關知識,掌握對應角相等,對應邊成比例的兩個三角形叫做相似三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABO中,∠OAB=Rt∠,點A在x軸的正半軸,點B在第一象限,C,D分別是BO,BA的中點,點E在CD的延長線上.若函數y1= (x>0)的圖象經過B,E,函數y2= (x>0)的圖象過點C,且△BCE的面積為1,則k2的值為(
A.
B.
C.3
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點A(1,0)和點B,與y軸交于點C(0,﹣3).

(1)求拋物線的解析式;
(2)如圖(1),己知點H(0,﹣1).問在拋物線上是否存在點G (點G在y軸的左側),使得SGHC=SGHA?若存在,求出點G的坐標;若不存在,請說明理由;
(3)如圖(2),拋物線上點D在x軸上的正投影為點E(﹣2,0),F(xiàn)是OC的中點,連接DF,P為線段BD上的一點,若∠EPF=∠BDF,求線段PE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一般情況下,學生注意力上課后逐漸增強,中間有段時間處于較理想的穩(wěn)定狀態(tài),隨后開始分散.實驗結果表明,學生注意力指數y隨時間x(min)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)上課后第5min與第30min相比較,何時學生注意力更集中?
(2)某道難題需連續(xù)講19min,為保證效果,學生注意力指數不宜低于36,老師能否在所需要求下講完這道題?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交ABE、ACD,連接BD

(1)若∠ABC=∠C,∠A=40°,求∠DBC的度數;

(2)若ABAC,且△BCD的周長為18cm,△ABC的周長為30cm,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實效,抽樣調查了部分居民小區(qū)一段時間內生活垃圾的分類情況,其相關信息如下:
根據圖表解答下列問題:
(1)請將條形統(tǒng)計圖補充完整;
(2)在抽樣數據中,產生的有害垃圾共噸;
(3)調查發(fā)現(xiàn),在可回收物中塑料類垃圾占 ,每回收1噸塑料類垃圾可獲得0.7噸二級原料.假設該城市每月產生的生活垃圾為5 000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=ax2+bx+4A(1,﹣1),B(5,﹣1),與y軸交于點C.
(1)求拋物線的函數表達式;
(2)如圖1,連接CB,若點P在直線BC上方的拋物線上,△BCP的面積為15,求點P的坐標;
(3)如圖2,⊙O1過點A、B、C三點,AE為直徑,點M為弧ACE上的一動點(不與點A,E重合),∠MBN為直角,邊BN與ME的延長線交于N,求線段BN長度的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】根據要求完成下列題目:

(1)圖中有_____塊小正方體;

(2)請在下面方格紙中分別畫出它的主視圖、左視圖和俯視圖;

(3)用小正方體搭一幾何體,使得它的俯視圖和左視圖與你在圖方格中所畫的圖一致,若這樣的幾何體最少要m個小正方體,最多要n個小正方體,則m+n的值為____

【答案】(1)7;(2)畫圖見解析;(3)16

【解析】

(1)直接根據立體圖形得出小正方體的個數;

(2)主視圖從左往右小正方形的個數為1,3,2;左視圖從左往右小正方形的個數為3,1;俯視圖從左往右小正方形的個數1,2,1;

(3)由俯視圖易得最底層小立方塊的個數,由左視圖找到其余層數里最少個數和最多個數相加即可.

(1)圖中有7塊小正方體;

故答案為:7;

(2)如圖所示:

;

(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要6個小立方塊,最多要10個小立方塊.則m+n=16

故答案為:16

【點睛】

此題主要考查了三視圖,用到的知識點為:三視圖分為主視圖、左視圖、俯視圖,分別是從物體正面、左面和上面看,所得到的圖形;俯視圖決定底層立方塊的個數,易錯點是由主視圖得到其余層數里最少的立方塊個數和最多的立方塊個數.

型】解答
束】
24

【題目】如圖,點P是∠AOB的邊OA上的一點,作∠AOB的平分線ON;

(1)過點POB的平行線交ON于點M;

(2)過點MOB的垂線,垂足為H;

(3)度量線段PO、PMMH的長度,會發(fā)現(xiàn):線段POPM的大小關系是 ;線段MHPM的大小關系是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,A、B在數軸上對應的數分別用a、b表示,且(a﹣20)2+|b+10|=0,P是數軸上的一個動點.

(1)在數軸上標出A、B的位置,并求出A、B之間的距離;

(2)已知線段OB上有點C|BC|=6,當數軸上有點P滿足PB=2PC時,求P點對應的數;

(3)動點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,…….點P能移動到與AB重合的位置嗎?若不能,請直接回答;若能,請直接指出,第幾次移動,與哪一點重合.

查看答案和解析>>

同步練習冊答案