【題目】閱讀材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,則有下面的不等式: ,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述的不等式可以表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)他們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(。┲祮(wèn)題的有力工具.
實(shí)例剖析:
已知x>0,求式子的最小值.
解:令a=x,b=,則由,得當(dāng)且僅當(dāng)時(shí),方程兩邊同時(shí)乘x,得到,解得x=2,式子有最小值,最小值為4.
學(xué)以致用:
根據(jù)上面的閱讀材料回答下列問(wèn)題:
(1)已知x>0,則當(dāng)x=__________時(shí),式子取到最小值,最小值為:_______________
(2)用籬笆圍一個(gè)面積為100m的長(zhǎng)方形花園,問(wèn)這個(gè)長(zhǎng)方形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆是多少米?
(3)已知x>0,則x取何值時(shí),式子取到最小值,最小值是多少?
【答案】(1) ,;(2) 當(dāng)矩形的長(zhǎng)、寬各為10米時(shí),所用籬笆最短,最短為40米;(3) 當(dāng)x=3時(shí),y取得最小值為4.
【解析】
(1)令a=2x,b=,這兩個(gè)數(shù)都是正數(shù),根據(jù)閱讀材料就可以直接得到結(jié)果;
(2)設(shè)這個(gè)矩形的長(zhǎng)為x米,則寬=面積÷長(zhǎng),即寬為米,則所用的籬笆長(zhǎng)等于長(zhǎng)加寬的和乘以2,根據(jù)閱讀材料即可求解;
(3)將原式整理成,根據(jù)閱讀材料直接求解最小值即可.
解:(1)令a=2x,b=,
已知,
則,
當(dāng)且僅當(dāng)時(shí),即,式子有最小值.
(2) 設(shè)這個(gè)矩形的長(zhǎng)為x米,所用籬笆的長(zhǎng)度為y米,
根據(jù)題意得:,
由上述性質(zhì)可知:
∵,
∴,
此時(shí),
解得:x=10,
∴當(dāng)矩形的長(zhǎng)、寬各為10米時(shí),所用籬笆最短,最短為40米.
(3) ,
,
當(dāng)時(shí),y取得最小值為4,
∴當(dāng)x=3時(shí),y取得最小值為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸于(﹣1,0)、(3,0)兩點(diǎn),以下四個(gè)結(jié)論正確的是(用序號(hào)表示)______________.
(1)圖象的對(duì)稱軸是直線 x=1
(2)當(dāng)x>1時(shí),y隨x的增大而減小
(3)一元二次方程ax2+bx+c=0的兩個(gè)根是﹣1和3
(4)當(dāng)﹣1<x<3時(shí),y<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)解不等式
(2)解不等式組:并將其解集表示在如圖所示的數(shù)軸上
(3),并寫(xiě)出不等式組的整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】班級(jí)元旦晚會(huì)上,主持人給大家?guī)?lái)了一個(gè)有獎(jiǎng)競(jìng)猜題,他在一個(gè)不透明的袋子中放了若干個(gè)形狀大小完全相同的白球,想請(qǐng)大家想辦法估計(jì)出袋中白球的個(gè)數(shù).?dāng)?shù)學(xué)課代表小明是這樣來(lái)估計(jì)的:他先往袋中放入10個(gè)形狀大小與白球相同的紅球,混勻后再?gòu)拇又须S機(jī)摸出20個(gè)球,發(fā)現(xiàn)其中有4個(gè)紅球.如果設(shè)袋中有白球x個(gè),根據(jù)小明的方法用來(lái)估計(jì)袋中白球個(gè)數(shù)的方程是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°).旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D.在三角板另一直角邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=45°,連接AF,EF.請(qǐng)?zhí)骄拷Y(jié)果:
①直接寫(xiě)出∠EAF的度數(shù)=__________度;若旋轉(zhuǎn)角∠BCD=α°,則∠AEF=____________度(可以用含α的代數(shù)式表示);
②DE與EF相等嗎?請(qǐng)說(shuō)明理由;
(類比探究)
(2)如圖2,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°).旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D.在三角板斜邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=30°,連接AF,EF.
①直接寫(xiě)出∠EAF的度數(shù)=___________度;
②若AE=1,BD=2,求線段DE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問(wèn)題:尺規(guī)作圖:作已知角的角平分線.已知:如圖,∠BAC.求作:∠BAC的角平分線AP.
小欣的作法如下:
(1)如圖,在平面內(nèi)任取一點(diǎn)O;
(2)以點(diǎn)O為圓心,AO為半徑作圓,交射線AB于點(diǎn)D,交射線AC于點(diǎn)E;
(3)連接DE,過(guò)點(diǎn)O作射線OP垂直于線段DE,交⊙O于點(diǎn)P;
(4)過(guò)點(diǎn)P作射線AP.
所以射線AP為所求
根據(jù)小欣設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OPDE
∴ =______(________________________)(填推理的依據(jù)),
∴∠BAP=______ (________________________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知:a=﹣2,b=+2,求代數(shù)式a2b﹣ab2的值;
(2)已知實(shí)數(shù)x、y滿足x2+10x++25=0,則(x+y)2019的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x的一次函數(shù),且當(dāng)x=-4,y=9;當(dāng)x=6時(shí),y=-1.
(1)求這個(gè)一次函數(shù)的解析式和自變量x的取值范圍;
(2)當(dāng)x=-時(shí),函數(shù)y的值;
(3)當(dāng)y=7時(shí),自變量x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com