【題目】如圖,在Rt△ABC中,∠A=30°,BC=1,點D,E分別是直角邊BC,AC的中點,則DE的長為( 。
A.1
B.2
C.
D.1+
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
B.“對角線相等且相互垂直平分的四邊形是正方形”這一事件是必然事件
C.“同位角相等”這一事件是不可能事件
D.“鈍角三角形三條高所在直線的交點在三角形外部”這一事件是隨機事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“全民閱讀”號召,某校在七年級800名學(xué)生中隨機抽取100名學(xué)生,對概念機學(xué)生在2015年全年閱讀中外名著的情況進行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計圖,其中閱讀了6本的人數(shù)占被調(diào)查人數(shù)的30%,根據(jù)圖中提供的信息,補全條形統(tǒng)計圖并估計該校七年級全體學(xué)生在2015年全年閱讀中外名著的總本數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【操作發(fā)現(xiàn)】在計算器上輸入一個正數(shù),不斷地按“ ”鍵求算術(shù)平方根,運算結(jié)果越來越接近1或都等于1.
【提出問題】輸入一個實數(shù),不斷地進行“乘以常數(shù)k,再加上常數(shù)b”的運算,有什么規(guī)律?
【分析問題】我們可用框圖表示這種運算過程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1 , 先在直線y=kx+b上確定點(x1 , y1),再在直線y=x上確定縱坐標為y1的點(x2 , y1),然后再x軸上確定對應(yīng)的數(shù)x2 , …,以此類推.
【解決問題】研究輸入實數(shù)x1時,隨著運算次數(shù)n的不斷增加,運算結(jié)果x,怎樣變化.
(1)若k=2,b=﹣4,得到什么結(jié)論?可以輸入特殊的數(shù)如3,4,5進行觀察研究;
(2)若k>1,又得到什么結(jié)論?請說明理由;
(3)①若k=﹣ ,b=2,已在x軸上表示出x1(如圖2所示),請在x軸上表示x2 , x3 , x4 , 并寫出研究結(jié)論;
②若輸入實數(shù)x1時,運算結(jié)果xn互不相等,且越來越接近常數(shù)m,直接寫出k的取值范圍及m的值(用含k,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,地面BD上兩根等長立柱AB,CD之間懸掛一根近似成拋物線y= x2﹣ x+3的繩子.
(1)求繩子最低點離地面的距離;
(2)因?qū)嶋H需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN為1米,離地面1.8米,求MN的長;
(3)將立柱MN的長度提升為3米,通過調(diào)整MN的位置,使拋物線F2對應(yīng)函數(shù)的二次項系數(shù)始終為 ,設(shè)MN離AB的距離為m,拋物線F2的頂點離地面距離為k,當2≤k≤2.5時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(﹣5,0)和點B(3,0).與y軸交于點C(0,5).有一寬度為1,長度足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和Q,交直線AC于點M和N.交x軸于點E和F.
(1)求拋物線的解析式;
(2)當點M和N都在線段AC上時,連接MF,如果sin∠AMF= ,求點Q的坐標;
(3)在矩形的平移過程中,當以點P,Q,M,N為頂點的四邊形是平行四邊形時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為( )
A.1:2
B.1:3
C.1:4
D.1:1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com