【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,交⊙O于點(diǎn)P,點(diǎn)B是⊙O 上一點(diǎn),AB是⊙O的切線,連接BP并延長(zhǎng),交直線l于點(diǎn)C.
(1)求證AB=AC;
(2)若PC=,OA=15,求⊙O的半徑的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)連接OB,求切線性質(zhì)得OB⊥AB,可得∠OBP+∠ABP=90°,有等邊對(duì)等角得∠OBP=∠OPB,由對(duì)頂角及等量代換得到∠OBP=∠OPC,再由OA⊥直線l,得到∠APC+∠ACP=90°,從而∠ABP=∠ACP,由等角對(duì)等邊即可得AB=AC;
(2)延長(zhǎng)AO交⊙O于D,連接BD,設(shè)⊙O半徑為R,則AP=15-R,OB=R,根據(jù)勾股定理得出方程152-R2=(6)2-(15-R)2,求出R即可.求出AC=AB=4,△DBP∽△CAP,得出,代入求出BP即可.
(1)連接OB,
∴OB⊥AB,
∴∠OBP+∠ABP=90°,
∵OB=OP,
∴∠OBP=∠OPB,
∴∠OBP=∠OPC,
∵OA⊥直線l,
∴∠PAC=90°,
∴∠APC+∠ACP=90°,
∴∠ABP=∠ACP,
∴AB=AC;
(2)延長(zhǎng)AO交⊙O于D,連接BD,
設(shè)⊙O半徑為R,則AP=15-R,OB=R,
在Rt△OBA中,AB2=152-R2,
在Rt△APC中,AC2=()2-(15-R)2,
∵AB=AC,
∴152-R2=()2-(15-R)2,
解得:R=9,
即⊙O半徑為9,
則AC=AB=12,
∵PD為直徑,OA⊥直線l,
∴∠DBP=∠PAC,
∵∠APC=∠BPD,
∴△DBP∽△CAP,
∴,
∴,
∴PB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,∠C=90°,∠B=30°,AD是△ABC的角平分線.
(1)求證:BD=2CD;
(2)若CD=2,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn)E(1,0)和F(5,0),并交y軸于D(0,-5);拋物線:(a≠0),
(1)試求拋物線的函數(shù)解析式;
(2)求證: 拋物線 與x軸一定有兩個(gè)不同的交點(diǎn);
(3)若a=1
①拋物線、頂點(diǎn)分別為 ( , )、( , ) ;當(dāng)x的取值范圍是_________ 時(shí),拋物線、 上的點(diǎn)的縱坐標(biāo)同時(shí)隨橫坐標(biāo)增大而增大;
②已知直線MN分別與x軸、、分別交于點(diǎn)P(m,0)、M、N,且MN∥y軸,當(dāng)1≤m≤5時(shí),求線段MN的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對(duì)角線AC,垂足是E,連接BE.
(1)求證:四邊形ABCD是平行四邊形;
(2)若△ABE是等邊三角形,四邊形BCDE的面積等于2,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,是中線,,垂足為,的延長(zhǎng)線交于點(diǎn),若,則的度數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD為菱形,且(0,3)、(﹣4,0).
(1)求經(jīng)過(guò)點(diǎn)的反比例函數(shù)的解析式;
(2)設(shè)是(1)中所求函數(shù)圖象上一點(diǎn),以頂點(diǎn)的三角形的面積與△COD的面積相等.求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)三角形的兩條邊的和是第三邊的兩倍,則稱這個(gè)三角形是“優(yōu)三角形”,這兩條邊的比稱為“優(yōu)比”(若這兩邊不等,則優(yōu)比為較大邊與較小邊的比),記為.
(1)命題:“等邊三角形為優(yōu)三角形,其優(yōu)比為1”,是真命題還是假命題?
(2)已知為優(yōu)三角形,,,,
①如圖1,若,,,求的值.
②如圖2,若,求優(yōu)比的取值范圍.
(3)已知是優(yōu)三角形,且,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一元二次方程,下列說(shuō)法:①若,則方程必有一根為;②若是方程的一個(gè)根,則一定有成立;③若,則方程一定有兩個(gè)不相等實(shí)數(shù)根;其中正確結(jié)論有( )個(gè).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,對(duì)角線AC=8cm.射線AF⊥AC,垂足為A.動(dòng)點(diǎn)P從點(diǎn)C出發(fā)在CA上運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)在射線AF上運(yùn)動(dòng),兩點(diǎn)的運(yùn)動(dòng)速度都是2cm/s.若兩點(diǎn)同時(shí)出發(fā),多少時(shí)間后,四邊形AQBP是特殊四邊形?請(qǐng)說(shuō)明特殊四邊形的名稱及理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com