(2006•湛江)如圖,已知AB是⊙O1的直徑,點C是⊙O1上不同于A,B的一點,以線段AC為直徑作⊙O2交AB于點D,過點D作DE∥BC,交⊙O2于點E,交AC于點F.求證:
(1)EC是⊙O1的切線;
(2)CE2=EF•BC.

【答案】分析:(1)要證EC是⊙O1的切線,只要證明∠O1CB=90°即可.
(2)連接CD,由Rt△CFD∽Rt△BDC得CD2=FD•BC,由垂徑定理知,CE=CD,EF=FD,故有CE2=EF•BC
解答:證明:(1)連接O1C,則∠O1CB=∠B,
∵DE∥BC,
∴∠EDA=∠B.
∵∠EDA=∠ECA,
∴∠ECA=∠O1CB.
∵AB是⊙O1的直徑,
∴∠ACO1+∠O1CB=90°.
∵∠ECA=∠O1CB,
∴∠ACO1+∠ECA=90°.
∴EC是⊙O1的切線.

(2)連接CD,則∠CDA=∠CDB=90°,
∵DE∥BC,∠ACB=90°,
∴∠CFD=∠ACB=90°.
∵AC是⊙O2的直徑,
∴AC垂直平分ED.
∴EF=FD,CE=CD.
∵∠FDC=∠DCB,∠CFD=∠BDC=90°,
∴△CFD∽△BDC.

∴CD2=FD•BC.
∵EF=FD,CE=CD,
∴CE2=EF•BC.
點評:此題主要考查切線的判定,相似三角形的判定及圓周角定理的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(03)(解析版) 題型:填空題

(2006•湛江)如圖,已知直線AB∥CD,∠ABE=60°,∠CDE=20°,則∠BED=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年陜西省寶雞市金臺區(qū)中考數(shù)學(xué)命題比賽模擬題(解析版) 題型:解答題

(2006•湛江)如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點E,過點E作直線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C.
(1)求證:CD是⊙O的切線;
(2)若CB=2,CE=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省湛江市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•湛江)如圖,在Rt△ABC中,∠C=90°,BC=1,AC=2,把邊長分別為x1,x2,x3,…,xn的n個正方形依次放入△ABC中,請回答下列問題:
(1)按要求填表:
n123
xn
(2)第n個正方形的邊長xn=______;
(3)若m,n,p,q是正整數(shù),且xm•xn=xp•xq,試判斷m,n,p,q的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省湛江市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•湛江)如圖,MN表示海岸線,A,B分別表示甲、乙兩間工廠,現(xiàn)要在海岸MN上修建一個碼頭,要求修建的碼頭到甲、乙兩間工廠的距離相等,求作碼頭的位置P.(用尺規(guī)作圖,保留作圖痕跡,不要求寫出作法、證明和討論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省湛江市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•湛江)如圖,⊙O的半徑為5,弦AB的長為8,點M在線段AB(包括端點A,B)上移動,則OM的取值范圍是( )

A.3≤OM≤5
B.3≤OM<5
C.4≤OM≤5
D.4≤OM<5

查看答案和解析>>

同步練習(xí)冊答案