如圖,拋物線與x軸交于點A(3,0),B(8,0),與y軸交于點C,且AC平分∠OCB,直線l是它的對稱軸.
(1)求直線l和拋物線的解析式;
(2)直線BC與l相交于點D,沿直線l平移直線BC,與直線l,y軸分別交于點E,F(xiàn),探究四邊形CDEF為菱形時點E的坐標;
(3)線段CB上有一動點P,從C點開始以每秒一個單位的速度向B點運動,PM⊥BC,交線段CA于點M,記點P運動時間為t,△CPO與△CPM的面積之差為y,求y與t(0<t≤6)之間的關系式,并確定在運動過程中y的最大值.
(1)直線l的解析式x=
3+8
2
=
11
2

如圖,過A作AK⊥BC于點K,
∵AC平分∠OCB,
∴AK=OA=3,CK=OC,AB=5,
∴KB=4.
方法一:設OC=x則CB=x+4,由勾股定理得:x2+82=(x+4)2,得x=6,
∴C的坐標為(0,6).
方法二:由△ABK△CBO得
AK
OC
=
KB
OB
,得OC=6,
∴C的坐標為(0,6)
設拋物線解析式為:y=a(x-3)(x-8),將點C坐標代入可得a=
1
4

∴所求拋物線解析式為:y=
1
4
(x-3)(x-8)
,
y=
1
4
x2-
11
4
x+6

(2)方法一:
如圖,記直線l與x軸交于點N,則NB=2.5,
∵在Rt△OBC中,tanB=
OC
OB
=
3
4
,BC=
62+82
=10
,
cosB=
4
5
,則DN=NB•tanB=
5
2
×
3
4
=
15
8
,
DB=
NB
cosB
=
25
8
,
∴D點坐標為(
11
2
,
15
8
).
CD=BC-DB=10-
25
8
=
55
8
即菱形邊長為
55
8
15
8
+
55
8
=
35
4
,
15
8
-
55
8
=-5,
∴E點坐標為(
11
2
,
35
4
)或(
11
2
,-5).
方法二:四邊形CDEF為菱形時,有兩種情況:
①當BC往下平移時,由菱形性質(zhì)知,點E1即為直線CA與對稱軸交點.
求得直線AC方程為:y=-2x+6,
與對稱軸x=
11
2
的交點為E1
11
2
,-5).
②當BC往上平移時,即D點往上平移菱形的邊長個單位得E2
求得直線BC:y=-
3
4
x+6
,與對稱軸x=
11
2
交點D的縱坐標為yD=
15
8
,
菱形邊長為yD-yE=
15
8
-(-5)=
55
8
,E2點縱坐標為:
15
8
+
55
8
=
35
4

∴四邊形CDEF為菱形時,E1
11
2
,-5),E2
11
2
35
4
).
(3)過點P作PL⊥OC,垂足為L,則∠CPL=∠B,
而Rt△BOC中,sin∠B=
OC
BC
=
3
5
,cos∠B=
4
5
,
由題意得CP=t,則LP=CPcos∠B=
4t
5

△CPO的面積為:
1
2
OC•LP=
12
5
t
,
∵CA平分∠OCB,
∴∠MCP=∠OCA,
Rt△AOC中,tan∠OCA=
OA
OC
=
1
2
,
∴PM=
t
2

△CPM的面積為:
1
2
CP•PM=
1
4
t2

y=
12
5
t-
1
4
t2
(0<t≤6),
t=
24
5
時,y有最大值為
144
25

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,頂點為A的拋物線y=a(x+2)2-4交x軸于點B(1,0),連接AB,過原點O作射線OMAB,過點A作ADx軸交OM于點D,點C為拋物線與x軸的另一個交點,連接CD.
(1)求拋物線的解析式(關系式);
(2)求點A,B所在的直線的解析式(關系式);
(3)若動點P從點O出發(fā),以每秒1個單位長度的速度沿著射線OM運動,設點P運動的時間為t秒,問:當t為何值時,四邊形ABOP分別為平行四邊形?等腰梯形?
(4)若動點P從點O出發(fā),以每秒1個單位長度的速度沿線段OD向點D運動,同時動點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CO向點O運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動時間為t秒,連接PQ.問:當t為何值時,四邊形CDPQ的面積最小?并求此時PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線的頂點為(3,3),且點(2,-2)在拋物線上,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(1,
3
),點B的坐標(-2,0),點O為原點.
(1)求過點A,O,B的拋物線解析式;
(2)在x軸上找一點C,使△ABC為直角三角形,請直接寫出滿足條件的點C的坐標;
(3)將原點O繞點B逆時針旋轉(zhuǎn)120°后得點O′,判斷點O′是否在拋物線上,請說明理由;
(4)在x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點E,線段OE把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOE面積比為2:3,若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,頂點坐標為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,3),與x軸交于A、B兩點.
(1)求拋物線的表達式;
(2)設拋物線的對稱軸與直線BC交于點D,連接AC、AD,求△ACD的面積;
(3)點E為直線BC上一動點,過點E作y軸的平行線EF,與拋物線交于點F.問是否存在點E,使得以D、E、F為頂點的三角形與△BCO相似?若存在,求點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

隨著海峽兩岸交流日益增強,通過“零關稅”進入我市的一種臺灣水果,其進貨成本是每噸0.5萬元,這種水果市場上的銷售量y(噸)是每噸的銷售價x(萬元)的一次函數(shù),且x=0.6時,y=2.4;x=1時,y=2.
(1)求出銷售量y(噸)與每噸的銷售價x(萬元)之間的函數(shù)關系式;
(2)若銷售利潤為w(萬元),請寫出w與x之間的函數(shù)關系式,并求出銷售價為每噸2萬元時的銷售利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線y=-
2
3
x2+bx+c經(jīng)過A(0,-4)、B(x1,0)、C(x2,0)三點,且x2-x1=5.
(1)求b、c的值;
(2)在拋物線上求一點D,使得四邊形BDCE是以BC為對角線的菱形;
(3)在拋物線上是否存在一點P,使得四邊形BPOH是以OB為對角線的菱形?若存在,求出點P的坐標,并判斷這個菱形是否為正方形;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,頂點為D的拋物線y=x2+bx-3與x軸相交于A,B兩點,與y軸相交于點C,連接BC,已知△BOC是等腰三角形.
(1)求點B的坐標及拋物線y=x2+bx-3的解析式;
(2)求四邊形ACDB的面積;
(3)若點E(x,y)是y軸右側(cè)的拋物線上不同于點B的任意一點,設以A,B,C,E為頂點的四邊形的面積為S.
①求S與x之間的函數(shù)關系式.
②若以A,B,C,E為頂點的四邊形與四邊形ACDB的面積相等,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側(cè)),其頂點P在線段MN上移動.若點M、N的坐標分別為(-1,-2)、(1,-2),點B的橫坐標的最大值為3,則點A的橫坐標的最小值為(  )
A.-3B.-1C.1D.3

查看答案和解析>>

同步練習冊答案