隨著海峽兩岸交流日益增強,通過“零關(guān)稅”進入我市的一種臺灣水果,其進貨成本是每噸0.5萬元,這種水果市場上的銷售量y(噸)是每噸的銷售價x(萬元)的一次函數(shù),且x=0.6時,y=2.4;x=1時,y=2.
(1)求出銷售量y(噸)與每噸的銷售價x(萬元)之間的函數(shù)關(guān)系式;
(2)若銷售利潤為w(萬元),請寫出w與x之間的函數(shù)關(guān)系式,并求出銷售價為每噸2萬元時的銷售利潤.

(1)設(shè)y=kx+b
∵已知x=0.6時,y=2.4;x=1時,y=2
0.6k+b=2.4
k+b=2
(2分)
k=-1
b=3
(3分)
∴函數(shù)關(guān)系式為y=-x+3(4分)

(2)∵由已知w=y•x-y×0.5=(-x+3)x-(-x+3)×0.5=-x2+3.5x-1.5(6分)
當(dāng)x=2時,w=-22+3.5×2-1.5=1.5
故此時的銷售利潤是1.5萬元.(7分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一座拋物線形拱橋,正常水位時橋下水面寬度為20m,拱頂距離水面4m.
(1)在如圖所示的直角坐標(biāo)系中,求出該拋物線的解析式;
(2)設(shè)正常水位時橋下的水深為2m,為保證過往船只順利航行,橋下水面的寬度不得小于18m,求水深超過多少米時就會影響過往船只在橋下的順利航行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,已知BCx軸,點A在x軸上,點C在y軸上,且AC=BC,過A、B、C三點的拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-
3
2
x2+bx
經(jīng)過點O、A、B三點,且A點坐標(biāo)為(4,0),B的坐標(biāo)為(m,2
3
),點C是拋物線在第三象限的一點,且橫坐標(biāo)為-2
(1)求拋物線的解析式和直線BC的解析式.
(2)直線BC與x軸相交于點D,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{1,-4,1}的函數(shù)的圖象向下平移2個單位,得到一個新函數(shù)圖象,求這個新函數(shù)圖象的解析式;
(2)“特征數(shù)”是{0,-
3
3
3
}
的函數(shù)圖象與x、y軸分別交點C、D,“特征數(shù)”是{0,-
3
,
3
}
的函數(shù)圖象與x軸交于點E,點O是原點,判斷△ODC與△OED是否相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,∠AOB=45°,過OA上到點O的距離分別為1,2,3,4,5 …的點作OA的垂線與OB相交,再按一定規(guī)律標(biāo)出一組如圖所示的黑色梯形.設(shè)前n個黑色梯形的面積和為Sn
n123
Sn
(1)請完成上面的表格;
(2)已知Sn與n之間滿足一個二次函數(shù)關(guān)系,試求出這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點A(3,0),B(8,0),與y軸交于點C,且AC平分∠OCB,直線l是它的對稱軸.
(1)求直線l和拋物線的解析式;
(2)直線BC與l相交于點D,沿直線l平移直線BC,與直線l,y軸分別交于點E,F(xiàn),探究四邊形CDEF為菱形時點E的坐標(biāo);
(3)線段CB上有一動點P,從C點開始以每秒一個單位的速度向B點運動,PM⊥BC,交線段CA于點M,記點P運動時間為t,△CPO與△CPM的面積之差為y,求y與t(0<t≤6)之間的關(guān)系式,并確定在運動過程中y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=
3
3
x2-
4
3
3
x+
3
與y軸交于點A,與x軸交于B、C兩點(C在B的左邊).
(1)過A、O、B三點作⊙M,求⊙M的半徑;
(2)點P為弧OAB上的動點,當(dāng)點P運動到何位置時△OPB的面積最大?求出此時點P的坐標(biāo)及△OPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-ax2+2ax+b與x軸的一個交點為A(-1,0),與y軸的正半軸交于點C.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點B的坐標(biāo);
(2)當(dāng)點C在以AB為直徑的⊙P上時,求拋物線的解析式;
(3)坐標(biāo)平面內(nèi)是否存在點M,使得以點M和(2)中拋物線上的三點A、B、C為頂點的四邊形是平行四邊形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案