【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④都是負(fù)數(shù),其中結(jié)論正確的序號(hào)是________

【答案】②③

【解析】

根據(jù)函數(shù)的開口方向,對(duì)稱軸以及與y軸的交點(diǎn)即可確定a,b,c的符號(hào),從而判斷①;根據(jù)對(duì)稱軸的位置即可判斷②;根據(jù)二次函數(shù)與x軸的交點(diǎn)的坐標(biāo),即可確定的范圍,確定-1的大小,從而判斷a+c的符號(hào);根據(jù)x=2-2時(shí),點(diǎn)的坐標(biāo)的符號(hào)判斷④.

解:∵函數(shù)的開口向下,
∴a<0,
∵函數(shù)與y軸的正半軸相交,
∴c>0,
∵對(duì)稱軸x=->0,
∴b>0,
∴abc<0,
故①錯(cuò)誤、②正確.
二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)異號(hào),因而方程ax2+bx+c=0又兩個(gè)異號(hào)的根,且方程的兩個(gè)x1,x2,不妨設(shè)x1<x2,則-2<x1<-1,且2<x2<3.則-6<<-3<-1.
∴a+c>0,故③正確;
當(dāng)x=-2時(shí),函數(shù)的縱坐標(biāo)小于0,即y=4a-2b+c<0,
當(dāng)x=2時(shí),函數(shù)的縱坐標(biāo)大于0,則y=4a+2b+c>0,
故④錯(cuò)誤.
故正確的是:②③.
故答案是:②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC12米,并測出此時(shí)太陽光線與地面成30°夾角.

1)求出樹高AB;

2)因水土流失,此時(shí)樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,為線段上一點(diǎn)(不與,重合),點(diǎn)為線段上一點(diǎn),,設(shè),

1)如圖(1),

①若,則___________________________

②若,,則____________,______________

③寫出的數(shù)量關(guān)系,并說明理由;

2)如圖(2),當(dāng)點(diǎn)在的延長線上時(shí),其它條件不變,請(qǐng)直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為個(gè)檔次,生產(chǎn)第一檔次(即最低檔次)的產(chǎn)品一天生產(chǎn)件,每件利潤元,每提高一個(gè)檔次,利潤每件增加元.

1)每件利潤為元時(shí),此產(chǎn)品質(zhì)量在第幾檔次?

2)由于生產(chǎn)工序不同,此產(chǎn)品每提高一個(gè)檔次,一天產(chǎn)量減少件.若生產(chǎn)第檔的產(chǎn)品一天的總利潤為元(其中為正整數(shù),且),求出關(guān)于的函數(shù)關(guān)系式;若生產(chǎn)某檔次產(chǎn)品一天的總利潤為元,該工廠生產(chǎn)的是第幾檔次的產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折疊長方形的一邊,使點(diǎn)落在邊的點(diǎn)處,若,求的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一種每件價(jià)格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:(1)求出yx之間的函數(shù)關(guān)系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤,那么每件商品的銷售價(jià)應(yīng)定為多少元?(3)寫出每天的利潤W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東臺(tái)市為打造“綠色城市”,積極投入資金進(jìn)行河道治污與園林綠化兩項(xiàng)工程,已知年投資萬元,預(yù)計(jì)年投資萬元.若這兩年內(nèi)平均每年投資增長的百分率相同.

求平均每年投資增長的百分率;

按此增長率,計(jì)算年投資額能否達(dá)到萬?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PQ是直線y=﹣上的兩點(diǎn),PQ的左側(cè),且滿足OPOQ,OPOQ,則點(diǎn)P的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:四邊形ABCD,AD∥BC,AD=AB=CD,∠BAD=120°,點(diǎn)E是射線CD上的一個(gè)動(dòng)點(diǎn)(與C、D不重合),△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°,得到△ABE',連接EE'.

(1)如圖1,∠AEE'= °;

(2)如圖2,如果將直線AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°后交直線BC于點(diǎn)F,過點(diǎn)EEM∥AD交直線AF于點(diǎn)M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;

(3)如圖3,在(2)的條件下,如果CE=2,AE=,ME的長.

查看答案和解析>>

同步練習(xí)冊答案