【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)9x2﹣100=0; (2)x(x﹣1)=2(x﹣1);
(3)(x+2)(x+3)=20; (4)3x2﹣4x﹣1=0.
【答案】(1)x=± ;(2)x1=1,x2=2;(3)x1=﹣7,x2=2;(4)x1=,x2=.
【解析】
(1)利用直接開平方解答;
(2)利用提取公因式法解答;
(3)利用因式分解法解答;
(4)利用公式法解答.
(1)∵9x2﹣100=0,
∴9x2=100,
∴x2=,
解得:x=±;
(2)∵x(x﹣1)=2(x﹣1),
∴x(x﹣1)﹣2(x﹣1)=0,
∴(x﹣1)(x﹣2)=0,
解得:x1=1,x2=2;
(3)∵(x+2)(x+3)=20,
∴x2+5x﹣14=0,
∴(x﹣2)(x+7)=0,
解得:x1=﹣7,x2=2;
(4)∵3x2﹣4x﹣1=0,
∴b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,
∴x=,
解得:x1=,x2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】父子倆到長(zhǎng)為25米的泳池游泳,兒子從此岸出發(fā)先游,10秒后,父親從彼岸向此岸游過來,如圖中的與分別是兒子與父親游泳時(shí)離此岸的距離(米)與兒子下水后的時(shí)間(秒)之間的圖象,其中父親與兒子的速度分別是米/秒與米/秒。
(1)填空:______,______.
(2)如果他們倆一直保持勻速游泳,并且到達(dá)泳池的一岸后都立即轉(zhuǎn)身向另一岸游去,直到兩人都同時(shí)到達(dá)泳池的同一岸停止,問兒子在泳池中一共要游多長(zhǎng)時(shí)間?
(3)他們倆在池中來回折返游泳,求父子倆在池中第二次相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;
②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動(dòng)點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)開始移動(dòng),點(diǎn)P的速度為1 cm/秒,點(diǎn)Q的速度為2 cm/秒,點(diǎn)Q移動(dòng)到點(diǎn)C后停止,點(diǎn)P也隨之停止運(yùn)動(dòng)下列時(shí)間瞬間中,能使△PBQ的面積為15cm 的是( )
A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自定義:在一個(gè)圖形上畫一條直線,若這條直線既平分該圖形的面積,又平分該圖形的周長(zhǎng),我們稱這條直線為這個(gè)圖形的“等分積周線”.
(1)如圖1,已知△ABC,AC≠BC,過點(diǎn)C能否畫出△ABC的一條“等分積周線”?若能,說出確定的方法,若不能,請(qǐng)說明理由.
(2)如圖2,在四邊形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足為F,交BC于點(diǎn)E,已知AB=3,BC=8,CD=5.求證:直線EF為四邊形ABCD的“等分積周線”;
(3)如圖3,在△ABC中,AB=BC=6,AC=8,請(qǐng)你畫出△ABC的一條“等分積周線”EF(要求:直線EF不過△ABC的頂點(diǎn),交邊AC于點(diǎn)F,交邊BC于點(diǎn)E),并說明EF為“等分積周線”的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P的坐標(biāo)為(-3,4),作出點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)P1,稱為第1次變換;再作出點(diǎn)P1關(guān)于y軸對(duì)稱的點(diǎn)P2,稱為第2次變換;再作點(diǎn)P2關(guān)于x軸對(duì)稱的點(diǎn)P3,稱為第3次變換,…,依次類推,則第2019次變換得到的點(diǎn)P2019的坐標(biāo)為 ____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=3,CD=8,AD=10.
(1)求∠BCD的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究應(yīng)用:
(1)計(jì)算: ; .
(2)上面的乘法計(jì)算結(jié)果很簡(jiǎn)潔,你發(fā)現(xiàn)了什么規(guī)律(公式)?用含、的字母表示該公式為: .
(3)下列各式能用第(2)題的公式計(jì)算的是( ).
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com