【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CF,連接EF.
(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.

【答案】
(1)解:補(bǔ)全圖形,如圖所示


(2)由旋轉(zhuǎn)的性質(zhì)得:∠DCF=90°,

∴∠DCE+∠ECF=90°,

∵∠ACB=90°,

∴∠DCE+∠BCD=90°,

∴∠ECF=∠BCD,

∵EF∥DC,

∴∠EFC+∠DCF=180°,

∴∠EFC=90°,

在△BDC和△EFC中,

∴△BDC≌△EFC(SAS),

∴∠BDC=∠EFC=90°


【解析】(1)根據(jù)題意補(bǔ)全圖形,如圖所示;(2)由旋轉(zhuǎn)的性質(zhì)得到∠DCF為直角,由EF與CD平行,得到∠EFC為直角,利用SAS得到三角形BDC與三角形EFC全等,利用全等三角形對(duì)應(yīng)角相等即可得證.
【考點(diǎn)精析】本題主要考查了旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 AB 是⊙O 的直徑,點(diǎn) C、D 在⊙O 上,過(guò) D 點(diǎn)作 PF∥AC交⊙O 于 F,交 AB 于點(diǎn) E,∠BPF=∠ADC

(1)求證:AEEB=DEEF.

(2)求證:BP 是⊙O 的切線:

(3)當(dāng)?shù)陌霃綖?/span>,AC=2,BE=1 時(shí),求 BP 的長(zhǎng),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高速鐵路工程指揮部,要對(duì)某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書.從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的:若由甲隊(duì)先做20天,剩下的工程再由甲、乙兩隊(duì)合作60天完成.

(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

(2)已知甲隊(duì)每天的施工費(fèi)用為8.6萬(wàn)元,乙隊(duì)每天的施工費(fèi)用為5.4萬(wàn)元,工程預(yù)算的施工費(fèi)用為1000萬(wàn)元.若在甲、乙工程隊(duì)工作效率不變的情況下使施工時(shí)間最短,問(wèn)擬安排預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰RtABC中,ACB=90°,D為BC的中點(diǎn),DEAB,垂足為E,過(guò)點(diǎn)B作BFAC交DE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:ADCF;

(2)連接AF,試判斷ACF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求m的取值范圍;
(2)當(dāng)x12+x22=6x1x2時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長(zhǎng)線上的一點(diǎn),且CE=AC.

(1)求∠CDE的度數(shù);

(2)若點(diǎn)M在DE上,且DC=DM,求證:ME=BD.

查看答案和解析>>

同步練習(xí)冊(cè)答案