【題目】定義:數(shù)x、y、z中較大的數(shù)稱為max{x,y,z}.例如max{﹣3,1,﹣2}=1,函數(shù)y=max{﹣t+4,t,}表示對于給定的t的值,代數(shù)式﹣t+4,t,中值最大的數(shù),如當(dāng)t=1時y=3,當(dāng)t=0.5時,y=6.則當(dāng)t= 時函數(shù)y的值最。
【答案】2
【解析】解:當(dāng)t=1時y=3,
當(dāng)t=0.5時,y=6,
當(dāng)t=2時y=2,
當(dāng)t=3時,y=3,
當(dāng)t=4時,y=4,
當(dāng)t≤2時,y隨x的增大而減小,當(dāng)t≥2時,y隨x的增大而增大,
當(dāng)t=2時函數(shù)y的值最。
所以答案是:2.
【考點(diǎn)精析】本題主要考查了反比例函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),兩條平行景觀長廊l1和l2間有一條“U”形通道,其中AB段與景觀長廊l1成45°角,長為20m;BC段與景觀長廊垂直,長為10m,CD段與景觀長廊l2成60°角,長為10m,求兩景觀長廊間的距離(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,緊挨著的三個正方形依次排列在直徑AB上,且各有一個頂點(diǎn)在上,若兩側(cè)兩個正方形邊長分別為2和3,則中間正方形的邊長為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD為角平分線,DE⊥AB,垂足為E.
(1)寫出圖中一對全等三角形和一對相似比不為1的相似三角形;
(2)選擇(1)中一對加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視2月8日報道,除夕夜春晚直播期間的觀眾總規(guī)模達(dá)10.33億,10.33億用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值
(1)﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=3,y= .
(2)已知a+b=4,ab=﹣2,求(4a-3b+2ab)-2(a-b-ab)的值.
(3)已知M=a2﹣3ab+2b2,N=a2+2ab﹣3b2,求M﹣[N﹣2M﹣(M﹣N)]的值.
(4)已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1,且3A+6B的值與x無關(guān),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD對角線AC上,且EC=2.5AE,直角三角形FEG的兩直角邊EF,EG分別交BC,CD于M,N.若正方形邊長是a,則重疊部分四邊形EMCN的面積為( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com