【題目】在對全市初中生的體質(zhì)健康測試中,青少年體質(zhì)研究中心隨機抽取的10名女生的立定跳遠的成績(單位:厘米)如下:123,191,216,191,159,206,191,210,186,227.

(1)通過計算,樣本數(shù)據(jù)(10名女生的成績)的平均數(shù)是190厘米,中位數(shù)是多少厘米?眾數(shù)是多少厘米?

(2)本市一初中女生的成績是194厘米,你認為她的成績?nèi)绾?說明理由;

(3)研究中心分別確定了一個標準成績,等于或大于這個成績的女學(xué)生該項素質(zhì)分別被評定為合格”、“優(yōu)秀等級,其中合格的標準為大多數(shù)女生能達到,優(yōu)秀的標準為全市有一半左右的學(xué)生能夠達到,你認為標準成績分別定為多少?說明理由;按擬定的合格標準,估計該市4650人中有多少人在合格以上?

【答案】(1)中位數(shù)是:191,眾數(shù)是191;(2)他的成績比全市學(xué)生的平均成績好;(3)標準成績定為200厘米,3255.

【解析】

試題分析:(1)利用中位數(shù)和眾數(shù)的定義即可求解,(2)可以從中位數(shù)和這組數(shù)據(jù)的平均數(shù)方面對這位學(xué)生成績進行評價,(3)用這組數(shù)據(jù)的中位數(shù)作為一個標準衡量學(xué)生達到合格及優(yōu)秀等級.

試題解析:(1)從小到大123,159,186,191,191,191,206,210,216,227,

所以中位數(shù)是:191,眾數(shù)是191.

(2)根據(jù)(1)中得到的樣本數(shù)據(jù)的結(jié)論,可以估計,在這次立定跳遠的成績測試中,全市學(xué)生的平均成績是190厘米,這位學(xué)生的成績是194厘米,大于平均成績190厘米,可以推測他的成績比全市學(xué)生的平均成績好.

(3)如果合格的標準為大多數(shù)女生能達到,標準成績應(yīng)定為191厘米(中位數(shù)).因為從樣本情況看,成績在191厘米以上(含191厘米)的學(xué)生占總?cè)藬?shù)的大多數(shù),全市有一半左右的學(xué)生評定為優(yōu)秀等級,可以估計,如果標準成績定為200厘米,全市將有一半左右的學(xué)生能夠評定為優(yōu)秀等級,

估計該市4650人中在合格以上的人數(shù)為:4650×=3255(人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,利用尺規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不寫作法),并根據(jù)要求填空:

(1)ABC的平分線BDAC于點D;

(2)BD的垂直平分線交ABE,交BCF;

(3)(1)、(2)條件下,連接DE,線段DE與線段BF的關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC中,AB=AC,AB的垂直平分線MNAC于點D,DBC=15°,則∠A的度數(shù)是(

A. 50° B. 45° C. 55° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點P從點O出發(fā),按逆時針方向沿周長為l的圖形運動一周,O,P兩點間的距離y與點P走過的路程x的函數(shù)關(guān)系如圖,那么點P所走的圖形是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|﹣4|﹣22+ ﹣tan60°(說明:本題不允許使用計算器計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班畢業(yè)聯(lián)歡會設(shè)計的即興表演節(jié)目的摸球游戲,游戲采用一個不透明的盒子,里面裝有五個分別標有數(shù)字1、2、3、4、5的乒乓球,這些球除數(shù)字外,其它完全相同,游戲規(guī)則是參加聯(lián)歡會的50名同學(xué),每人將盒子乒乓球搖勻后閉上眼睛從中隨機一次摸出兩個球(每位同學(xué)必須且只能摸一次).若兩球上的數(shù)字之和是偶數(shù)就給大家即興表演一個節(jié)目;否則,下個同學(xué)接著做摸球游戲,依次進行.

(1)用列表法或畫樹狀圖法求參加聯(lián)歡會同學(xué)表演即興節(jié)目的概率;

(2)估計本次聯(lián)歡會上有多少個同學(xué)表演即興節(jié)目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(3,0),與y軸交于C(0,3),頂點為D(1,4),對稱軸為DE.

(1)拋物線的解析式是;
(2)如圖(2),點P是AD上一個動點,P′是P關(guān)于DE的對稱點,連接PE,過P′作P′F∥PE交x軸于F.設(shè)S四邊形EPP′F=y,EF=x,求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(3)在(1)中的拋物線上是否存在點Q,使△BCQ成為以BC為直角邊的直角三角形?若存在,求出Q的坐標;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=3,ON=7,點P直線OB上的點,要使點P,M,N構(gòu)成等腰三角形的點P________個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以邊長為2的正方形的中心O為端點,引兩條相互垂直的射線,分別與正方形的邊交于AB兩點,則線段AB的最小值是

查看答案和解析>>

同步練習(xí)冊答案