【題目】如圖,⊙O的半徑為1,等腰直角三角形ABC的頂點(diǎn)B的坐標(biāo)為(,0),∠CAB=90°,AC=AB,頂點(diǎn)A在⊙O上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)A在x軸的正半軸上時(shí),直接寫出點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)A運(yùn)動(dòng)到x軸的負(fù)半軸上時(shí),試判斷直線BC與⊙O位置關(guān)系,并說明理由;
(3)設(shè)點(diǎn)A的橫坐標(biāo)為x,△ABC的面積為S,求S與x之間的函數(shù)關(guān)系式.
【答案】(1)點(diǎn)A的坐標(biāo)為(1,0)時(shí),AB=AC=﹣1,點(diǎn)C的坐標(biāo)為(1,﹣1)或(1,1﹣);(2)見解析;(3)S==﹣x,其中﹣1≤x≤1.
【解析】
(1)A點(diǎn)坐標(biāo)為(1,0),根據(jù)AB=AC,分兩種情形求出C點(diǎn)坐標(biāo);
(2)根據(jù)題意過點(diǎn)O作OM⊥BC于點(diǎn)M,求出OM的長,與半徑比較得出位置關(guān)系;
(3)過點(diǎn)A作AE⊥OB于點(diǎn)E,在Rt△OAE中求AE的長,然后再在Rt△BAE中求出AB的長,進(jìn)而求出面積的表達(dá)式;
(1)點(diǎn)A的坐標(biāo)為(1,0)時(shí),,點(diǎn)C的坐標(biāo)為或;
(2)如圖1中,結(jié)論:直線BC與⊙O相切.理由如下:
過點(diǎn)O作OM⊥BC于點(diǎn)M,
∴∠OBM=∠BOM=45°,
∴OM=OBsin45°=1
∴直線BC與⊙O相切;
(3)過點(diǎn)A作AE⊥OB于點(diǎn)E.
在Rt△OAE中,AE2=OA2﹣OE2=1﹣x2,
在Rt△BAE中,AB2=AE2+BE2,
∴ 其中﹣1≤x≤1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)紙盒內(nèi)有張完全相同的卡片,分別標(biāo)號(hào)為,,,.隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取另一張卡片.
(1)用列舉法求“兩次抽出卡片的標(biāo)號(hào)等于”的概率;
(2)小明同學(xué)連續(xù)做了次試驗(yàn),這次試驗(yàn)沒有一次出現(xiàn)“兩次抽出卡片的標(biāo)號(hào)和等于”.他說,“第次試驗(yàn)我一定能夠‘兩次抽出卡片的標(biāo)號(hào)和等于’”.你認(rèn)為他說得對(duì)嗎,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,AG平分∠BAC交BD于G,DE⊥AG于點(diǎn)H.下列結(jié)論:①AD=2AE:②FD=AG;③CF=CD:④四邊形FGEA是菱形;⑤OF=BE,正確的有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80米的圍網(wǎng)在水庫中圍成發(fā)如圖所示①②③的三塊矩形區(qū)域,而且這三塊矩形區(qū)域面積相等.已知矩形區(qū)域ABCD的面積為30m2,設(shè)BC的長度為xm,所列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天晚上,小麗幫媽媽清洗茶杯,三個(gè)茶杯只有花色不同,其中一個(gè)無蓋(如圖),在清洗過程中,突然停電了,小麗只好摸黑清洗(在摸黑清洗中,能分清杯蓋與茶杯)
(1)小麗摸黑清洗過程中,在三個(gè)茶杯中他隨手拿起兩個(gè),則這兩個(gè)都屬于有杯蓋的茶杯的概率是多少?
(2)小麗摸黑清洗完茶杯和杯蓋后,只好把杯蓋與茶杯隨機(jī)地搭配在一起,則花色搭配完全正確的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是直線y=2x+1與反比例函數(shù)(x>0)圖象的交點(diǎn),且點(diǎn)A的橫坐標(biāo)為1.
(1)求k的值;
(2)如圖1,雙曲線(x>0)上一點(diǎn)M,若S△AOM=4,求點(diǎn)M的坐標(biāo);
(3)如圖2所示,若已知反比例函數(shù)(x>0)圖象上一點(diǎn)B(3,1),點(diǎn)P是直線y=x上一動(dòng)點(diǎn),點(diǎn)Q是反比例函數(shù)(x>0)圖象上另一點(diǎn),是否存在以P、A、 B、Q為頂點(diǎn)的平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖①為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.
已知點(diǎn)A的坐標(biāo)為(1,0),
(1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
(2)點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時(shí),求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教研室的數(shù)學(xué)調(diào)研小組對(duì)老師在講評(píng)試卷中學(xué)生參與的深度與廣度進(jìn)行評(píng)調(diào)查,其評(píng)價(jià)項(xiàng)目為“主動(dòng)質(zhì)疑”、“獨(dú)立思考”、“專注聽講”、“講解題目”四項(xiàng),該調(diào)研小組隨機(jī)抽取了若干名初中九年級(jí)學(xué)生的參與情況,繪制成如圖所示的頻數(shù).
分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題
(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有60000名九年級(jí)學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的九年級(jí)學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.
求:(1)一次函數(shù)的解析式;
(2)△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com