【題目】如圖,拋物線直線相交兩點(diǎn),且拋物線經(jīng)過點(diǎn).

(1)求拋物線解析式;

(2)點(diǎn)拋物線上的一個動點(diǎn)(不點(diǎn)、點(diǎn)合),過點(diǎn)直線于點(diǎn),交直線點(diǎn).

當(dāng)點(diǎn)坐標(biāo);

是否存在點(diǎn)使為等腰三角形,若存在請直接寫出點(diǎn)坐標(biāo),若不存在,請說明理由.

【答案】(1)y=﹣x2+4x+5;(2)P點(diǎn)坐標(biāo)為(2,9)或(6,﹣7);,)或(4+,﹣4﹣8)或(4﹣,4﹣8)或(0,5).

【解析】

試題分析:(1)由直線解析式可求得B點(diǎn)坐標(biāo),由A、B、C三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;

(2)可設(shè)出P點(diǎn)坐標(biāo),則可表示出E、D的坐標(biāo),從而可表示出PE和ED的長,由條件可知到關(guān)于P點(diǎn)坐標(biāo)的方程,則可求得P點(diǎn)坐標(biāo);

由E、B、C三點(diǎn)坐標(biāo)可表示出BE、CE和BC的長,由等腰三角形的性質(zhì)可得到關(guān)于E點(diǎn)坐標(biāo)的方程,可求得E點(diǎn)坐標(biāo),則可求得P點(diǎn)坐標(biāo).

試題解析:(1)點(diǎn)B(4,m)在直線y=x+1上,

m=4+1=5,

B(4,5),

把A、B、C三點(diǎn)坐標(biāo)代入拋物線解析式可得,解得

拋物線解析式為y=﹣x2+4x+5;

(2)設(shè)P(x,﹣x2+4x+5),則E(x,x+1),D(x,0),

則PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,

PE=2ED,

|﹣x2+3x+4|=2|x+1|

當(dāng)﹣x2+3x+4=2(x+1)時,解得x=﹣1或x=2,但當(dāng)x=﹣1時,P與A重合不合題意,舍去,

P(2,9);

當(dāng)﹣x2+3x+4=﹣2(x+1)時,解得x=﹣1或x=6,但當(dāng)x=﹣1時,P與A重合不合題意,舍去,

P(6,﹣7);

綜上可知P點(diǎn)坐標(biāo)為(2,9)或(6,﹣7);

設(shè)P(x,﹣x2+4x+5),則E(x,x+1),且B(4,5),C(5,0),

BE=|x﹣4|,CE=,BC=,

當(dāng)BEC為等腰三角形時,則有BE=CE、BE=BC或CE=BC三種情況,

當(dāng)BE=CE時,則|x﹣4|=,解得x=,此時P點(diǎn)坐標(biāo)為(,);

當(dāng)BE=BC時,則|x﹣4|=,解得x=4+或x=4﹣,此時P點(diǎn)坐標(biāo)為(4+,﹣4﹣8)或(4﹣,4﹣8);

當(dāng)CE=BC時,則=,解得x=0或x=4,當(dāng)x=4時E點(diǎn)與B點(diǎn)重合,不合題意,舍去,此時P點(diǎn)坐標(biāo)為(0,5);

綜上可知存在滿足條件的點(diǎn)P,其坐標(biāo)為()或(4+,﹣4﹣8)或(4﹣,4﹣8)或(0,5).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.則下列說法正確的是 .(寫出所有正確說法的序號)

當(dāng)x=1.7時,[x]+(x)+[x)=6;

當(dāng)x=﹣2.1時,[x]+(x)+[x)=﹣7;

方程4[x]+3(x)+[x)=11的解為1<x<1.5;

當(dāng)﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的兩邊分別為310,則此三角形的第三邊可能是(

A. 4B. 5C. 9D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠A:∠B:∠C=1:2:3,最小邊BC=3cm,最長邊AB的長為( )

A. 9cm B. 8cm C. 7cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x(x﹣2)=2﹣x的正整數(shù)根是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)今“微信運(yùn)動”被越來越多的人關(guān)注和喜愛,興趣小組隨機(jī)調(diào)查了我教師日“微信運(yùn)動”中的步數(shù)情況進(jìn)行統(tǒng)計整理,繪制了如下統(tǒng)計圖完整)

數(shù)

頻數(shù)

頻率

根據(jù)以上信息,解答下列問題:

(1)寫出的值并補(bǔ)全頻數(shù)分布直方圖;

(2)本市約有教師,用調(diào)查樣本數(shù)據(jù)估計日行走步數(shù)超過步(包含教師有多少名?

(3)若名被調(diào)查的教師中選取行走數(shù)超過步(包含步的兩名教師與大家分享心得,求被兩名教師恰好步(包含步)以上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣4x+5的頂點(diǎn)坐標(biāo)為(
A.(﹣2,﹣1)
B.(2,1)
C.(2,﹣1)
D.(﹣2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1在銳角△ABC中,∠ABC=45°,AD⊥BC于點(diǎn)D,BE⊥AC于點(diǎn)E,BE與AD交于點(diǎn)F.

(1)若BF=5,DC=3,求AB的長;
(2)在圖1上過點(diǎn)F作BE的垂線,過點(diǎn)A作AB的垂線,鏈條垂線交于點(diǎn)G,連接BG,得如圖2.
①求證:∠BGF=45°;
②求證:AB=AG+ AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一根彈簧長8 cm,它所掛物體的質(zhì)量不能超過5 kg,并且所掛的物體每增加1 kg,彈簧就伸長0.5 cm,則掛上物體后彈簧的長度y(cm)與所掛物體的質(zhì)量x(kg)(0≤x≤5)之間的關(guān)系式為( )

A. y0.5(x8)B. y0.5x8C. y0.5(x8)D. y0.5x8

查看答案和解析>>

同步練習(xí)冊答案