【題目】現(xiàn)有以下命題:
①如果三角形的三個內(nèi)角的度數(shù)比是,那么這個三角形是直角三角形;
②如果不等式的解集為,那么;
③若將一次函數(shù)的圖象向上平移3個單位,則平移所得直線不經(jīng)過第四象限;
④命題“對角線互相垂的四邊形是菱形”的逆命題.
則真命題的個數(shù)為( ).
A.0個B.1個C.2個D.3個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有高度相同的一段方木和一段圓木,體積之比是1:1.在高度不變的情況下,如果將方木加工成盡可能大的圓柱,將圓木加工成盡可能大的長方體,則得到的圓柱和長方體的體積之比為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計(jì),在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)種植的總成本為w元,
①求w與x之間的函數(shù)關(guān)系式;
②若種植的總成本為5600元,從植樹工人中隨機(jī)采訪一名工人,求采訪到種植C種樹苗工人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的對角線與交于點(diǎn),點(diǎn)的坐標(biāo)為,軸于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn).
(1)求的值;
(2)若將矩形向下平移個單位,使點(diǎn)落在反比例函數(shù)的圖象上,求的值;
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線y=x-1交x軸、y軸于A、B點(diǎn),點(diǎn)P(1,,且S四邊形PAOB=3.5,雙曲線y=經(jīng)過點(diǎn)P.
(1)求k的值;
(2)如圖2,直線)交射線BA于E,交雙曲線y=于F,將直線向右平移4個單位長度后交射線于,交雙曲線y=于,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線與軸、軸分別交于點(diǎn)、,點(diǎn)在軸負(fù)半軸上,且,把沿軸翻折,使點(diǎn)落在軸上的點(diǎn)處,點(diǎn)為線段上一點(diǎn),連接交軸于點(diǎn),若,點(diǎn)的縱坐標(biāo)為,則直線的解析式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果,正方形ABCD的邊長為2cm,E為CD邊上一點(diǎn),∠DAE=30°,M為AE的中點(diǎn),過點(diǎn)M作直線分別與AD、BC相交于點(diǎn)P、Q,若PQ=AE,則PD等于( )
A. cm或cm B. cm C.cm或cm D.cm或cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:若拋物線的頂點(diǎn)在坐標(biāo)軸上,則稱該拋物線為“數(shù)軸函數(shù)”例如拋物線y=x2和y=(x-1)2都是“數(shù)軸函數(shù)”.
(1)拋物線y=x2-4x+4和拋物線y=x2-6x是“數(shù)軸函數(shù)“嗎?請說明理由;
(2)若拋物線y=2x2+4mx+m2+16是“數(shù)軸函數(shù)”,求該拋物線的表達(dá)式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com