【題目】已知外切于,的外公切線,,為切點(diǎn),若,,則的距離是( )

A. B. C. D.

【答案】B

【解析】

先畫(huà)圖,由AB是⊙O1和⊙O2的外公切線,則∠O1AB=∠O2BA=90°,再由O1A=O1M,O2B=O2M,得∠O1AM=∠O1MA,∠O2BM=∠O2MB,則∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,則∠AMB=∠BMO2+∠AMO1=90°,再由勾股定理求出AB邊上的高.

如圖,


∵AB是⊙O1和⊙O2的外公切線,∴∠O1AB=∠O2BA=90°,
∵O1A=O1M,O2B=O2M,∴∠O1AM=∠O1MA,∠O2BM=∠O2MB,
∴∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,
∴∠AMB=∠BMO2+∠AMO1=90°,
∴AM⊥BM,
∵M(jìn)A=4cm,MB=3cm,
∴由勾股定理得,AB=5cm,

由三角形的面積公式,M到AB的距離是.故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCDADBC,邊AB4,BC8.將此長(zhǎng)方形沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)G處.

1)試判斷BEF的形狀,并說(shuō)明理由;

2)若AE3,求BEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(guò)點(diǎn) (-3,0),(2,-5).

(1)試確定此二次函數(shù)的解析式;

(2)請(qǐng)你判斷點(diǎn)P(-2,3)是否在這個(gè)二次函數(shù)的圖象上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,完成下列推理過(guò)程:

如圖所示,點(diǎn)E外部,點(diǎn)DBC邊上,DEACF,若,

求證:

證明:∵(已知),

________________),

________________),

又∵

________________________),

,

(已證)

(已知)

(已證)

________.

________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直角三角板ABC繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度,得到△DCE,其中CEAB交于點(diǎn)F,∠ABC=30°,連接BE,若△BEF為等腰三角形(即有兩內(nèi)角相等),則旋轉(zhuǎn)角的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,ACB=90°,ABC=60°,BC=2cm,DBC的中點(diǎn),若動(dòng)點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t6),連接DE,當(dāng)BDE是直角三角形時(shí),t的值為

A、2 B2.53.5 C、3.54.5 D23.54.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將進(jìn)貨價(jià)為40元的臺(tái)燈以50元的銷(xiāo)售價(jià)售出,平均每月能售出800個(gè).市場(chǎng)調(diào)研表明:當(dāng)銷(xiāo)售價(jià)每上漲1元時(shí),其銷(xiāo)售量就將減少10個(gè).設(shè)每個(gè)臺(tái)燈的銷(xiāo)售價(jià)上漲元.

(1) 試用含的代數(shù)式填空:

漲價(jià)后,每個(gè)臺(tái)燈的利潤(rùn)為 元;

漲價(jià)后,商場(chǎng)的臺(tái)燈平均每月的銷(xiāo)售量為 臺(tái);

(2) 如果商場(chǎng)要想銷(xiāo)售總利潤(rùn)平均每月達(dá)到20000元,商場(chǎng)經(jīng)理甲說(shuō)在原售價(jià)每臺(tái)50元的基礎(chǔ)上再上漲40元,可以完成任務(wù)”,商場(chǎng)經(jīng)理乙說(shuō)不用漲那么多,在原售價(jià)每臺(tái)50元的基礎(chǔ)上再上漲30元就可以了,試判斷經(jīng)理甲與乙的說(shuō)法是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線Lx軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C0,4,線段OA上的動(dòng)點(diǎn)M(與OA不重合)從A點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng)。

1)求A、B兩點(diǎn)的坐標(biāo);

2)求△COM的面積SM的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;

3)當(dāng)t何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B兩個(gè)村莊的坐標(biāo)分別為(2,2)、(7,4),一輛汽車(chē)從原點(diǎn)O出發(fā),在x軸上行駛.

(1)汽車(chē)行駛到什么位置時(shí)離村莊A最近?寫(xiě)出此位置的坐標(biāo).

(2)汽車(chē)行駛到什么位置時(shí)離村莊B最近?寫(xiě)出此位置的坐標(biāo).

(3)請(qǐng)?jiān)趫D中畫(huà)出汽車(chē)到兩村莊的距離和最短的位置,并求出此最短的距離和.

查看答案和解析>>

同步練習(xí)冊(cè)答案