【題目】如圖,⊙O是△ABC的外接圓,過點A作⊙O的切線與直徑CD的延長線交于點E,已知AE=AC.
(1)求∠B的度數(shù);
(2)若ED=1,求AE的長.
【答案】
(1)解:連接OA,
∵AE是⊙O的切線,
∴OA⊥AE,
∵AE=AC,OA=OC,
∴∠E=∠ACE=∠OAC,
∵∠BAC+∠E+∠ACE=180°,
∴90°+3∠E=180°,
∴∠E=∠ACE=∠OAC=30°,
∴∠AOC=90°+30°=120°,
∴ 的度數(shù)為120°, 的度數(shù)為240°,
∴∠B=120°
(2)解:∵在直角三角形OAE中,∠E=30°,
∴OE=2OA,
∵OA=OD,
∴OA=OD=OE=1,
∴OE=2,
∴AE= = .
【解析】(1)根據(jù)切線的性質(zhì)得出OA⊥AE,然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理得出∠E=∠ACE=∠OAC=30°,得出∠AOC=120°,從而求得 的度數(shù)為120°, 的度數(shù)為240°,即可求得∠B=120°;(2)根據(jù)30°的直角三角形的性質(zhì)得出OE=2OA=2OD,得出OD=ED=1,得出EO=2,根據(jù)勾股定理即可求得AE.
【考點精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識點,需要掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若正方形EFGH由正方形ABCD繞某點旋轉(zhuǎn)得到,則可以作為旋轉(zhuǎn)中心的是( 。
A.M或O或N
B.E或O或C
C.E或O或N
D.M或O或C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC,∠ACB的平分線相交于點F,過點F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論:
①△BDF,△CEF都是等腰三角形;
②DE=BD+CE;
③△ADE的周長為AB+AC;
④BD=CE.其中正確的是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°.
(1)求證:AC2=BCDC;
(2)若BC=5,DC=1,求線段AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是給定△ABC邊AB上一動點,D是CP的延長線上一點,且2DP=PC,連結(jié)DB,動點P從點B出發(fā),沿BA方向勻速運動到終點A,則△APC與△DBP面積的差的變化情況是( )
A.始終不變
B.先減小后增大
C.一直變大
D.一直變小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋中,裝有10個紅球、2個黃球、8個籃球,它們除顏色外都相同.
(1)求從袋中摸出一個球是紅球的概率;
(2)現(xiàn)從袋中取出若干個紅球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個球是黃球的概率是 ,問取出了多少個紅球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B的坐標分別為(0,8),(﹣3,0),點P從點A出發(fā),以2單位/秒的速度沿射線AO方向運動,同時點E從點B出發(fā),以1單位/秒的速度沿射線BO方向運動,以PE為斜邊構(gòu)造Rt△PEC(字母按逆時針順序),且EC=2PC,拋物線y=﹣2x2+bx+c經(jīng)過點(0,4),(﹣1,﹣2),設(shè)運動時間為t秒.
(1)求該拋物線的表達式;
(2)當t=2時,求點C的坐標;
(3)①當t<3時,求點C的坐標(用含t的代數(shù)式表示);
②在運動過程中,若點C恰好落在該拋物線上,請直接寫出所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y= x與雙曲線y= (k>0)交于A、B兩點,點B的坐標為(﹣4,﹣2),C為雙曲線y= (k>0)上一點,且在第一象限內(nèi),若△AOC的面積為6,則點C的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com