【題目】如圖,已知直線y= x與雙曲線y= (k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(﹣4,﹣2),C為雙曲線y= (k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6,則點(diǎn)C的坐標(biāo)為

【答案】(2,4)或(8,1)
【解析】解:∵點(diǎn)B(﹣4,﹣2)在雙曲線y= 上, ∴ =﹣2,
∴k=8,
根據(jù)中心對稱性,點(diǎn)A、B關(guān)于原點(diǎn)對稱,
所以,A(4,2),
如圖,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,設(shè)點(diǎn)C的坐標(biāo)為(a, ),
若SAOC=SCOF+S梯形ACFE﹣SAOE ,
= ×8+ ×(2+ )(4﹣a)﹣ ×8,
=4+ ﹣4,
=
∵△AOC的面積為6,
=6,
整理得,a2+6a﹣16=0,
解得a1=2,a2=﹣8(舍去),
= =4,
∴點(diǎn)C的坐標(biāo)為(2,4).
若SAOC=SAOE+S梯形ACFE﹣SCOF= ,
=6,
解得:a=8或a=﹣2(舍去)
∴點(diǎn)C的坐標(biāo)為(8,1).
所以答案是:(2,4)或(8,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,過點(diǎn)A作⊙O的切線與直徑CD的延長線交于點(diǎn)E,已知AE=AC.

(1)求∠B的度數(shù);
(2)若ED=1,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上的一點(diǎn),C是直線AB外的一點(diǎn),OD是∠AOC的平分線,

OE是∠COB的平分線.

(1)已知∠1=23°,求∠2的度數(shù);

(2)無論點(diǎn)C的位置如何改變,圖中是否存在一個角,它的大小始終不變(∠AOB除外)?如果存在,求出這個角的度數(shù);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時從A點(diǎn)出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.

(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時,點(diǎn)Q停止運(yùn)動,這時,在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請求出E點(diǎn)坐標(biāo);若不存在,請說明理由.
(3)當(dāng)P,Q運(yùn)動到t秒時,△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請判定此時四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC三個頂點(diǎn)A,BC的坐標(biāo)分別為A1,2),B4,3),C3,1).

1)三角形A1B1C1向右平移4個單位長度,再向下平移3個單位長度,恰好得到三角形ABC,試寫出三角形A1B1C1三個頂點(diǎn)的坐標(biāo).

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解決小區(qū)停車難的問題,某小區(qū)準(zhǔn)備新建50個停車位,已知新建1個地上停車位和1個地下停車位需0.5萬元,新建3個地上停車位和2個地下停車位需1.1萬元.

(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?

(2)根據(jù)實(shí)際情況,該小區(qū)新建地上停車位不多于33個,且預(yù)計投資金額不超過11萬元,共有幾種建造方式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并計算:已知線段AB=2 cm,延長線段AB至點(diǎn)C,使得2BC=AB,再反向延長AC至點(diǎn)D,使得AD=AC.

(1)準(zhǔn)確地畫出圖形,并標(biāo)出相應(yīng)的字母;

(2)線段DC的中點(diǎn)是哪個?線段AB的長是線段DC長的幾分之幾?

(3)求出線段BD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1cm,圓心角為90°的扇形OAB中,分別以O(shè)A、OB為直徑作半圓,則圖中陰影部分的面積為(
A.πcm2
B. πcm2
C. cm2
D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級某班同學(xué)為了了解2012年某居委會家庭月均用水情況,隨機(jī)調(diào)查了該居委會部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下調(diào)整:

月均用水量x(t)

頻數(shù)(戶)

頻率

0<x≤5

6

 0.12

5<x≤10

a

 0.24

10<x≤15

16

 0.32

15<x≤20

10

 0.20

20<x≤25

4

0.08

25<x≤30

2

 0.04

請解答以下問題:

(1)頻數(shù)分布表中a=   ,把頻數(shù)分布直方圖補(bǔ)充完整;

(2)求該居委會用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;

(3)若該居委會有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?

查看答案和解析>>

同步練習(xí)冊答案