【題目】如圖,已知∠BOC=2∠AOC,OD平分∠AOB,∠BOE=90°,若∠AOC=40°,則∠DOE的度數(shù)等于( 。
A.20°B.25°C.30°D.30°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC. 已知AB=2,DE=1,BD=8,設CD=x.
(1)用含x的代數(shù)式表示AC+CE的長;
(2)求AC+CE的值最小;
(3)根據(jù)(2)中的規(guī)律和結論,請構圖求出代數(shù)式的最小值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:
(1)已知點A,B,C表示的數(shù)分別為1,,-3.觀察數(shù)軸,與點A的距離為3的點表示的數(shù)是 ,A,B兩點之間的距離為 。
(2)數(shù)軸上,點B關于點A的對稱點表示的數(shù)是 ;
(3)若將數(shù)軸折疊,使得A點與C點重合,則與B點重合的點表示的數(shù)是 ;若此數(shù)軸上M,N兩點之間的距離為2019(M在N的左側),且當A點與C點重合時,M點與N點也恰好重合,則點M表示的數(shù)是 ,點N表示的數(shù)是 。
(4)若數(shù)軸上P,Q兩點間的距離為a(P在Q的左側),表示數(shù)b的點到P,Q的兩點的距離相等,將數(shù)軸折疊,當P點與Q點重合時,點P表示的數(shù)是 ,點Q表示的數(shù)是 (用含a,b的式子表示這兩個數(shù))。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度數(shù);
(2)BE+CG的長;
(3)⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AC∥BD,連結AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連結PA、PB,構成∠PAC、∠APB、∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°)
(1)當動點P落在第①部分時,有∠APB=∠PAC+∠PBD,請說明理由;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?若不成立,試寫出∠PAC、∠APB、∠PBD三個角的等量關系(無需說明理由);
(3)當動點P在第③部分時,探究∠PAC、∠APB、∠PBD之間的關系,寫出你發(fā)現(xiàn)的一個結論并加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關系.
(發(fā)現(xiàn)證明)小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.
(類比引申)如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD.
(探究應用)如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結果取整數(shù),參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上,點表示,點表示,點表示.動點從點出發(fā),沿數(shù)軸正方向以每秒個單位的速度勻速運動;同時,動點從點出發(fā),沿數(shù)軸負方向以每秒個單位的速度勻速運動.設運動時間為秒.
(1)當為何值時,、兩點相遇?相遇點所對應的數(shù)是多少?
(2)在點出發(fā)后到達點之前,求為何值時,點到點的距離與點到點的距離相等;
(3)在點向右運動的過程中,是的中點,在點到達點之前,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com