【題目】若 , , ,…;則a2011的值為 . (用含m的代數(shù)式表示)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,射線AM上有一點B,AB=6,點C是射線AM上異于B的一點,過C作CD⊥AM,且CD= AC,過D點作DE⊥AD,交射線AM于E,在射線CD取點F,使得CF=CB,連接AF并延長,交DE于點G,設AC=3x.
(1)當C在B點右側時,求AD.DF的長.(用關于x的代數(shù)式表示)
(2)當x為何值時,△AFD是等腰三角形;
(3)作點D關于AG的對稱點D′,連接FD′,GD′,若四邊形DFD′G是平行四邊形,求x的值.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程,乙工程隊單獨先做10天后,再由甲,乙兩個工程隊合作20天就能完成全部工程,已知甲工程隊單獨完成此工程所需天數(shù)是乙工程隊單獨完成此工程所需天數(shù)的 ,
(1)求:甲,乙工程隊單獨做完成此工程各需多少天?
(2)甲工程隊每天的費用為0.67萬元,乙工程隊每天的費用為0.33萬元,該工程的預算費用為20萬元,若甲,乙工程隊一起合作完成該工程,請問工程費用是否夠用,若不夠用應追加多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=mx+n(m≠0)的圖象,當y2>y1 , x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求點B的坐標;
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
請結合圖表完成下列各題:
(1)①求表中a的值;②頻數(shù)分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(3)第5組10名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結論:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形④S四邊形ABMD= AM2 .
其中正確結論的是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(﹣3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H,鏈接BM
(1)菱形ABCO的邊長
(2)求直線AC的解析式;
(3)動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,
①當0<t< 時,求S與t之間的函數(shù)關系式;
②在點P運動過程中,當S=3,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com