【題目】如圖,已知△ABC、△DCE、△FEG、△HGI4個(gè)全等的等腰三角形,底邊BC、CE、EG、GI在同一直線上,且AB=2,BC=1,連接AI,交GH于點(diǎn)Q

1)求證:△IAB∽△ACB;

2)求HQQG的值.

【答案】1)證明見解析;(2HQQG=3

【解析】

1)由題意得出BC=1BI=4,則再由∠ABI=ABC,得△IAB∽△ACB

2)由GQAB可得,求出,則,則HQQG的值可求出.

1)∵△ABC、DCE、FEG是三個(gè)全等的等腰三角形,

HI=AB=2,GI=BC=1,BI=4BC=4

,,

∵∠ABI=ABC,

∴△IAB∽△ACB;

2)∵∠ABC=HGI,

GQAB

∴△QGI∽△ABI,

,

QG

QH=2,

HQQG=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A()兩點(diǎn),與坐標(biāo)軸分別交于MN兩點(diǎn).

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫出的取值范圍是____________;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘巡邏艇航行至海面B處時(shí),得知正北方向上距B20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營救.已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù))(  )

A. 7.3海里B. 10.3海里C. 17.3海里D. 27.3海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,612日為端午節(jié).在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.請根據(jù)小麗提供的信息,解答小華和小明提出的問題.

1)小華的問題解答:    

2)小明的問題解答:    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+x1x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為D.將拋物線位于直線lyt(t)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個(gè)“M”形的新圖象.

(1)點(diǎn)A,BD的坐標(biāo)分別為   ,   ,   

(2)如圖,拋物線翻折后,點(diǎn)D落在點(diǎn)E處.當(dāng)點(diǎn)E在△ABC內(nèi)(含邊界)時(shí),求t的取值范圍;

(3)如圖,當(dāng)t0時(shí),若Q是“M”形新圖象上一動(dòng)點(diǎn),是否存在以CQ為直徑的圓與x軸相切于點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC12cm,BC16cmD、E分別是AC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為2cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為4cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t0t4s.解答下列問題:

1)當(dāng)t為何值時(shí),以點(diǎn)E、P、Q為頂點(diǎn)的三角形與△ADE相似?

2)當(dāng)t為何值時(shí),△EPQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

如圖1,在等邊△ABC中,AB9,⊙C半徑為3,P為圓上一動(dòng)點(diǎn),連結(jié)AP,BP,求AP+BP的最小值

(1)嘗試解決:

為了解決這個(gè)問題,下面給出一種解題思路,通過構(gòu)造一對(duì)相似三角形,將BP轉(zhuǎn)化為某一條線段長,具體方法如下:(請把下面的過程填寫完整)

如圖2,連結(jié)CP,在CB上取點(diǎn)D,使CD1,則有

又∵∠PCD=∠   

   ∽△   

PDBP

AP+BPAP+PD

∴當(dāng)AP,D三點(diǎn)共線時(shí),AP+PD取到最小值

請你完成余下的思考,并直接寫出答案:AP+BP的最小值為   

(2)自主探索:

如圖3,矩形ABCD中,BC6,AB8P為矩形內(nèi)部一點(diǎn),且PB4,則AP+PC的最小值為   (請?jiān)趫D3中添加相應(yīng)的輔助線)

(3)拓展延伸:

如圖4,在扇形COD中,O為圓心,∠COD120°,OC4OA2,OB3,點(diǎn)P上一點(diǎn),求2PA+PB的最小值,畫出示意圖并寫出求解過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為30°,測得大樓頂端A的仰角為45°(點(diǎn)BC,E在同一水平直線上),已知AB=80mDE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù):≈1.414,≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解決農(nóng)民工子女就近入學(xué)問題,我市第一小學(xué)計(jì)劃2012年秋季學(xué)期擴(kuò)大辦學(xué)規(guī)模.學(xué)校決定開支八萬元全部用于購買課桌凳、辦公桌椅和電腦,要求購買的課桌凳與辦公桌椅的數(shù)量比為20:1,購買電腦的資金不低于16000元,但不超過24000元.已知一套辦公桌椅比一套課桌凳貴80元,用2000元恰好可以買到10套課桌凳和4套辦公桌椅.(課桌凳和辦公桌椅均成套購進(jìn))

1)一套課桌凳和一套辦公桌椅的價(jià)格分別為多少元?

2)求出課桌凳和辦公桌椅的購買方案.

查看答案和解析>>

同步練習(xí)冊答案