【題目】點O為數(shù)軸的原點,點A、B在數(shù)軸上的位置如圖所示,點A表示的數(shù)為5,線段AB的長為線段OA長的1.2倍.點C在數(shù)軸上,M為線段OC的中點
(1)點B表示的數(shù)為____________
(2)若線段BM的長為4.5,則線段AC的長為___________
(3)若線段AC的長為x,求線段BM的長(用含x的式子表示)
【答案】(1)-1;(2)2或16;(3)或.
【解析】
(1)首先根據(jù)OA的長求出AB的長,即可得出OB的長,然后根據(jù)點B的位置,即可得出點B表示的數(shù);
(2)需分兩種情況進(jìn)行求解:點C在點B的左側(cè)和右側(cè),求出OM和OC的長,即可得出AC的長;
(3)需分兩種情況進(jìn)行求解:點C在點B的左側(cè)和右側(cè),求出OM和OC的長,即可得出BM的長.
(1)根據(jù)題意,得
線段OA的長為5,線段AB的長為6
故線段OB的長為6-5=1
點B在原點左側(cè),點B表示的數(shù)為-1
(2)若點C在點B的左側(cè),則OM的長為5.5,OC的長為11,AC的長為16;
若點C在點B的右側(cè),則OM的長為3.5,OC的長為7,AC的長為2;
故線段AC的長為2或16.
(3)若點C在點B的左側(cè),則OC的長為,OM的長為,BM的長為;
若點C在點B的右側(cè),則OC的長為,OM的長為,BM的長為;
故線段BM的長為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交x軸于點B(2,0),交y軸于點A(0,2),直線DM⊥x軸正半軸于點M,交線段AB于點C,DM=3,連接DA,∠DAC=90°.
(1)求直線AB的解析式.
(2)求D點坐標(biāo)及過O、D、B三點的拋物線解析式.
(3)若點P是線段OB上的動點,過點P作x軸的垂線交AB于F,交(2)中拋物線于E,連CE,是否存在P使△BPF與△FCE相似?若存在,請求出P點坐標(biāo);若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b是表示兩個不同點A,B的有理數(shù),且|a|=5,|b|=2,它們在數(shù)軸的位置如圖所示.
(1)試確定a,b的值;并求表示a,b兩數(shù)的點的距離;
(2)若點C在數(shù)軸上,點C到點A的距離是點C到點B距離的3倍,則點C表示的數(shù)為_ ____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中, 是邊上一動點,連接,過點作的垂線,垂足為,交于點,交于點.
(1)當(dāng)=,且是的中點時,求證: =.
(2)在(1)的條件下,求的值;
(3)類比探究:若=3, =2,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3,請直接寫出所有滿足條件的AC的長;
(2)如圖1,在四邊形ABCD中,AD∥BC,對角線BD平分∠ABC,∠BAC=∠ADC.
①求證:△ABC∽△DCA;②求證:△ABC是比例三角形;
(3)如圖2,在(2)的條件下,當(dāng)∠ADC=90°時,求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請根據(jù)圖中提供的信息,列一元一次方程解應(yīng)用題,回答下列問題:
(1)求一個暖瓶與一個水杯分別是多少元?
(2)若買3個暖瓶與4個水杯一共需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點間的距離等于這兩個點所對應(yīng)的數(shù)的差的絕對值.例:點A、B在數(shù)軸上對應(yīng)的數(shù)分別為a、b,則A、B兩點間的距離表示為AB=|a﹣b|.根據(jù)以上知識解題:
(1)點A在數(shù)軸上表示3,點B在數(shù)軸上表示2,那么AB=_______.
(2)在數(shù)軸上表示數(shù)a的點與﹣2的距離是3,那么a=______.
(3)如果數(shù)軸上表示數(shù)a的點位于﹣4和2之間,那么|a+4|+|a﹣2|=______.
(4)對于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)了解某市區(qū)居民生活用水開始實行階梯式計量水價,實行的階梯式計量水價分為三級(污水處理費、垃圾處理費等另計),如下表所示:
例:若某用戶2016年9月份的用水量為35噸,按三級計算則應(yīng)交水費為:20×1.6+10×2.4+(352010)×4.8=80(元)
(1)如果小白家2016年6月份的用水量為10噸,則需繳交水費___元;
(2)如果小明家2016年7月份繳交水費44元,那么小明家2016年7月份的用水量為多少噸?
(3)如果小明家2016年8月份的用水量為a噸,那么則小明家該月應(yīng)繳交水費多少元?(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富課外活動,某校將購買一些乒乓球拍和乒乓球,某商場銷售一種乒乓球拍和乒乓球,乒乓球拍每副定價80元,乒乓球每盒定價20元,“國慶節(jié)”期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案.
方案一:買一副乒乓球拍送一盒乒乓球;
方案二:乒乓球拍和乒乓球都按定價的90%付款.
某校要到該商場購買乒乓球拍20副,乒乓球盒(>20且為整數(shù)).
(1)若按方案一購買,需付款 元(用含的整式表示,要化簡); 若按方案二購買,需付款 元(用含的整式表示,要化簡).
(2)若30,通過計算說明此時按哪種方案購買較為合算?
(3)當(dāng)30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com