【題目】若隨機(jī)變量X~N(2,32),且P(X≤1)=P(X≥a),則(x+a)2(ax﹣ 5展開(kāi)式中x3項(xiàng)的系數(shù)是

【答案】1620
【解析】解:隨機(jī)變量X~N(2,32),均值是2, 且P(X≤1)=P(X≥a),
∴a=3;
∴(x+a)2(ax﹣ 5=(x+3)2(3x﹣ 5=(x2+6x+9) ;
展開(kāi)式的通項(xiàng)公式為
Tr+1= (3x)5﹣r =(﹣1)r35﹣r ,
令5﹣ =1,解得r= ,不合題意,舍去;
令5﹣ =2,解得r=2,對(duì)應(yīng)x2的系數(shù)為(﹣1)223 =270;
令5﹣ =3,解得r= ,不合題意,舍去;
∴展開(kāi)式中x3項(xiàng)的系數(shù)是6×270=1620.
所以答案是:1620.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,2 ),C是AB的中點(diǎn),過(guò)點(diǎn)C作y軸的垂線,垂足為D,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),過(guò)點(diǎn)P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線第一次垂直時(shí),點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1、F2分別為雙曲線C: =1的左、右焦點(diǎn),P為雙曲線C右支上一點(diǎn),且|PF1|=2|PF2|,則△PF1F2外接圓的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且 =0. (Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問(wèn),米幾何?”如圖是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為(
A.4.5
B.6
C.7.5
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點(diǎn)E在AD上,且AE=2ED.
(Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)當(dāng)二面角A﹣PB﹣E的余弦值為多少時(shí),直線PC與平面PAB所成的角為45°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若將f(x)的圖象向左平移 個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,則φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD為矩形,點(diǎn)E,F(xiàn)在側(cè)棱PA,PB上且PE=2EA,PF=2FB,點(diǎn)M為四棱錐內(nèi)任一點(diǎn),則M在平面EFCD上方的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,已知四邊形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且點(diǎn)A為線段SD的中點(diǎn),AD=2DC=1,AB=SD,現(xiàn)將△SAB沿AB進(jìn)行翻折,使得二面角S﹣AB﹣C的大小為90°,得到的圖形如圖(2)所示,連接SC,點(diǎn)E、F分別在線段SB、SC上.
(1)證明:BD⊥AF;
(2)若三棱錐B﹣AEC的體積是四棱錐S﹣ABCD體積的 ,求點(diǎn)E到平面ABCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案