【題目】為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計如下:
使用次數(shù) | 0 | 5 | 10 | 15 | 20 |
人數(shù) | 1 | 1 | 4 | 3 | 1 |
(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是 次,眾數(shù)是 次.
(2)若小明同學(xué)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是 .(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)
(3)若該小區(qū)有2000名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
【答案】(1)10,10;(2)中位數(shù)和眾數(shù);(3)22000
【解析】
(1)根據(jù)眾數(shù)、中位數(shù)和平均數(shù)的定義分別求解可得;
(2)由中位數(shù)和眾數(shù)不受極端值影響可得答案;
(3)用總?cè)藬?shù)乘以樣本中居民的平均使用次數(shù)即可得.
解:(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是:(次),
根據(jù)使用次數(shù)可得:眾數(shù)為10次;
(2)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是中位數(shù)和眾數(shù),
故答案為:中位數(shù)和眾數(shù);
(3)平均數(shù)為(次),
(次)
估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù)為22000次.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知關(guān)于x的二次函數(shù)y=﹣x2+bx+c(c>0)的圖象與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=OC=3,頂點為M.
(1)求出二次函數(shù)的關(guān)系式;
(2)點P為線段MB上的一個動點,過點P作x軸的垂線PD,垂足為D.若OD=m,△PCD的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;
(3)探索線段MB上是否存在點P,使得△PCD為直角三角形?如果存在,求出P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于、兩點,與軸相交于點,且點與點的坐標(biāo)分別為.,點是拋物線的頂點.點為線段上一個動點,過點作軸于點,若.
(1)求二次函數(shù)解析式;
(2)設(shè)的面積為,試判斷有最大值或最小值?若有,求出其最值,若沒有,請說明理由;
(3)在上是否存在點,使為直角三角形?若存在,請寫出點的坐標(biāo)若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,AB=3,連結(jié)AB并延長至C,連結(jié)OC,若滿足OC2=BCAC,tanα=2,則點C的坐標(biāo)為( )
A.(﹣2,4)B.(﹣3,6)C.(﹣,)D.(﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O在AB上,以O為圓心,以OA長為半徑的圓分別與AC,AB交于點D,E,直線BD與⊙O相切于點 D.
(1)求證:∠CBD=∠A;
(2)若AC=6,AD:BC=1:.
①求線段BD的長;
②求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過A(-1,0)、B(3,0),直線AD交拋物線于點D,點D的橫坐標(biāo)為2,點P(m,n)是線段AD上的動點.
(1)求拋物線和直線AD的解析式;
(2)過點P的直線垂直于x軸,交拋物線于點H,
①求線段PH的長度l與m的關(guān)系式;
②當(dāng)PH=2時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知經(jīng)過點A(﹣3,0)的拋物線y=ax2+2ax﹣3與y軸交于點C,點B與點A關(guān)于該拋物線的對稱軸對稱,D為該拋物線的頂點.
(1)直接寫出該拋物線的對稱軸以及點B的坐標(biāo)、點C的坐標(biāo)、點D的坐標(biāo);
(2)聯(lián)結(jié)AD、DC、CB,求四邊形ABCD的面積;
(3)聯(lián)結(jié)AC.如果點E在該拋物線上,過點E作x軸的垂線,垂足為H,線段EH交線段AC于點F.當(dāng)EF=2FH時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組開展了一次課外活動,過程如下:如圖1,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點與D點重合.三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.
(1)求證:DP=DQ;
(2)如圖2,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DE交BC于點E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請猜測他的結(jié)論并予以證明;
(3)如圖3,固定三角板直角頂點在D點不動,轉(zhuǎn)動三角板,使三角板的一邊交AB的延長線于點P,另一邊交BC的延長線于點Q,仍作∠PDQ的平分線DE交BC延長線于點E,連接PE,若AB:AP=3:4,請幫小明算出△DEP的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com