【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演經(jīng)典誦讀、民樂演奏歌曲聯(lián)唱、民族舞蹈等節(jié)目.小穎對(duì)每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________;

(2)補(bǔ)全折線統(tǒng)計(jì)圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀民樂演奏、歌曲聯(lián)唱、民族舞蹈分別用,,,表示).利用樹狀圖或表格求出該班選擇兩項(xiàng)的概率.

【答案】(1)40,781°;(2)見解析;(3).

【解析】

1)根據(jù)圖表可得,五屆藝術(shù)節(jié)共有:;根據(jù)中位數(shù)定義和圓心角公式求解;(2)根據(jù)各屆班數(shù)畫圖;(3)用列舉法求解;

解:(1) 五屆藝術(shù)節(jié)共有:個(gè),第四屆班數(shù):40×22.5%=9,第五屆40=13,第一至第三屆班數(shù):5,7,6,故班數(shù)的中位數(shù)為7,

第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為:3600×22.5%=81°;

(2)折線統(tǒng)計(jì)圖如下;.

(3)樹狀圖如下.

所有情況共有12種,其中選擇兩項(xiàng)的共有2種情況,

所以選擇兩項(xiàng)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在探究函數(shù)y=|x2-4x+3|的圖象和性質(zhì)時(shí),經(jīng)歷以下幾個(gè)學(xué)習(xí)過程:

(1)列表(完成以下表格)

x

-2

-1

0

1

2

3

4

5

6

y1=x2-4x+3

15

8

0

0

3

15

y=|x2-4x+3|

15

8

0

0

3

15

(2)描點(diǎn)并畫出函數(shù)圖象草圖(在備用圖1中描點(diǎn)并畫圖)

(3)根據(jù)圖象完成以下問題

()觀察圖象

函數(shù)y=|x2-4x+3|的圖象可由函數(shù)y1=x2-4x+3的圖象如何變化得到?

答:______

()數(shù)學(xué)小組探究發(fā)現(xiàn)直線y=8與函數(shù)y=|x2-4x+3|的圖象交于點(diǎn)E、FE(-1,8)F(5,8),則不等式|x2-4x+3|8的解集是______;

()設(shè)函數(shù)y=|x2-4x+3|的圖象與x軸交于A、B兩點(diǎn)(B位于A的右側(cè)),與y軸交于點(diǎn)C

①求直線BC的解析式;

②探究應(yīng)用:將直線BC沿y軸平移m個(gè)單位后與函數(shù)y=|x2-4x+3|的圖象恰好有3個(gè)交點(diǎn),求此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形,,,為邊上任意一點(diǎn),連結(jié),,以為直徑作分別交,于點(diǎn),,連結(jié),

1)若點(diǎn)的中點(diǎn),證明:

2)若為等腰三角形時(shí),求的長(zhǎng).

3)作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)

①當(dāng)點(diǎn)落在線段上時(shí),設(shè)線段,交于點(diǎn),求的面積之比.

②在點(diǎn)的運(yùn)動(dòng)過程中,當(dāng)點(diǎn)落在四邊形內(nèi)時(shí)(不包括邊界),則的范圍是________(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,拋物線軸交于點(diǎn),與軸交于點(diǎn),且,

1)求拋物線解析式;

2)如圖2,點(diǎn)是拋物線第一象限上一點(diǎn),連接軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段長(zhǎng)為,求之間的函數(shù)關(guān)系式;

3)在(2)的條件下,過點(diǎn)作直線軸,在上取一點(diǎn)(點(diǎn)在第二象限),連接,使,連接并延長(zhǎng)軸于點(diǎn),過點(diǎn)于點(diǎn),連接、.若時(shí),求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸于點(diǎn),交軸正半軸于點(diǎn),與過點(diǎn)的直線相交于另一點(diǎn),過點(diǎn)軸,垂足為

1)求拋物線的表達(dá)式;

2)點(diǎn)在線段上(不與點(diǎn),重合),過軸,交直線,交拋物線于點(diǎn)于點(diǎn),求的最大值;

3)若軸正半軸上的一動(dòng)點(diǎn),設(shè)的長(zhǎng)為.是否存在,使以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1,等腰ABC中,AB=AC,BAC=120°,作ADBC于點(diǎn)D,則DBC的中點(diǎn),BAD=BAC=60°,于是 = =

遷移應(yīng)用:如圖2,ABCADE都是等腰三角形,BAC=∠DAE=120°,D,EC三點(diǎn)在同一條直線上,連接BD

求證:ADB≌△AEC;

請(qǐng)直接寫出線段AD,BD,CD之間的等量關(guān)系式;

拓展延伸:如圖3,在菱形ABCD中,ABC=120°,在ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CECF

證明CEF是等邊三角形;

AE=5,CE=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點(diǎn),B是頂點(diǎn)),曲線BC是雙曲線的一部分.曲線ABBC組成圖形W由點(diǎn)C開始不斷重復(fù)圖形W形成一組“波浪線”.若點(diǎn),在該“波浪線”上,則m的值為________n的最大值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC10,tanA2,BEAC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是( )

A. B. C. D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)先化簡(jiǎn),再求值:(a+b)(ab)+(a+b)2-2a2,其中a=2,b=2

(2)如圖①,小紅家陽臺(tái)上放置了個(gè)可折疊的曬衣架,圖②是曬衣架的側(cè)面示意圖,經(jīng)測(cè)量:OC=OD=126cmOA=OB=56cm,且AB=32cm,求此時(shí)C,D兩點(diǎn)間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案