【題目】在平面直角坐標(biāo)系xOy中,有任意三角形,當(dāng)這個(gè)三角形的一條邊上的中線等于這條邊的一半時(shí),稱這個(gè)三角形叫和諧三角形,這條邊叫和諧邊,這條中線的長(zhǎng)度叫和諧距離

1)已知A2,0),B0,4),C1,2),D4,1),這個(gè)點(diǎn)中,能與點(diǎn)O組成和諧三角形的點(diǎn)是 ,和諧距離 ;

2)連接BD,點(diǎn)MNBD上任意兩個(gè)動(dòng)點(diǎn)(點(diǎn)M,N不重合),點(diǎn)E是平面內(nèi)任意一點(diǎn),EMN是以MN和諧邊和諧三角形,求點(diǎn)E的橫坐標(biāo)t的取值范圍;

3)已知⊙O的半徑為2,點(diǎn)P是⊙O上的一動(dòng)點(diǎn),點(diǎn)Q是平面內(nèi)任意一點(diǎn),OPQ和諧三角形,且和諧距離2,請(qǐng)描述出點(diǎn)Q所在位置.

【答案】1A,B;;(2;(3)點(diǎn)Q在以點(diǎn)O為圓心,4為半徑的圓上;或在以點(diǎn)O為圓心,為半徑的圓上.

【解析】

1)由題意利用和諧三角形以及和諧距離的定義進(jìn)行分析求解;

2)由題意可知以BD的中點(diǎn)為圓心,以BD為直徑作圓此時(shí)可求點(diǎn)E的橫坐標(biāo)t的取值范圍;

3)根據(jù)題意△OPQ和諧三角形,且和諧距離2,畫出圖像進(jìn)行分析.

解:(1)由題意可知當(dāng)A2,0),B0,4)與O構(gòu)成三角形時(shí)滿足圓周角定理即能與點(diǎn)O組成和諧三角形,此時(shí)和諧距離;

2)根據(jù)題意作圖,以BD的中點(diǎn)為圓心,以BD為直徑作圓,

可知當(dāng)E在如圖位置時(shí)求點(diǎn)E的橫坐標(biāo)t的取值范圍,

解得點(diǎn)E的橫坐標(biāo)t的取值范圍為

3)如圖

當(dāng)PQ和諧邊時(shí),點(diǎn)Q在以點(diǎn)O為圓心,為半徑的圓上;

當(dāng)OQ和諧邊時(shí),點(diǎn)Q在以點(diǎn)O為圓心,4為半徑的圓上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx3a0)與直線ykx+ck0)相交于A(﹣1,0)、B2,﹣3)兩點(diǎn),且拋物線與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)求出C、D兩點(diǎn)的坐標(biāo)

3)在第四象限拋物線上有一點(diǎn)P,若△PCD是以CD為底邊的等腰三角形,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為原點(diǎn),O的半徑為1,點(diǎn)A的坐標(biāo)為(2,0),動(dòng)點(diǎn)BO上,以AB為邊作等邊△ABC(順時(shí)針),則線段OC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2在第一象限內(nèi)經(jīng)過的整數(shù)點(diǎn)(橫坐標(biāo),縱坐標(biāo)都為整數(shù)的點(diǎn))依次為A1A2,A3,…An,…,將拋物線yx2沿直線Lyx向上平移,得一系列拋物線,且滿足下列條件:

①拋物線的頂點(diǎn)M1,M2,M3,…Mn,…都在直線Lyx上;

②拋物線依次經(jīng)過點(diǎn)A1,A2A3An,….

M2016頂點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某無人機(jī)興趣小組在操場(chǎng)上開展活動(dòng)(如圖),此時(shí)無人機(jī)在離地面30米的D處,無人機(jī)測(cè)得操控者A的俯角為37°,測(cè)得點(diǎn)C處的俯角為45°.又經(jīng)過人工測(cè)量操控者A和教學(xué)樓BC距離為57米,求教學(xué)樓BC的高度.(注:點(diǎn)A,B,C,D都在同一平面上.參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E為△ABC的外接圓⊙O上一點(diǎn),OEBC于點(diǎn)D,連接AE并延長(zhǎng)至點(diǎn)F,使∠FBC=∠BAC,

1)求證:直線BF是⊙O的切線;

2)若點(diǎn)DOE中點(diǎn),過點(diǎn)BBGAF于點(diǎn)G,連接DG,⊙O的半徑為,AC=5.

①求∠BAC的度數(shù);

②求線段DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,以AB為直徑的圓OBC于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)DDFAC于點(diǎn)F,交AB的延長(zhǎng)線于點(diǎn)G

1)求證:DFO的切線;

2)已知BD,CF2,求DFBG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB45°.點(diǎn)D(與點(diǎn)BC不重合)為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點(diǎn)D在線段BC上運(yùn)動(dòng).試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動(dòng).(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC4,BC3,CDx,求線段CP的長(zhǎng).(用含x的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為2的等邊三角形.取BC邊中點(diǎn)E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作;取中點(diǎn),作,,得到四邊形,它的面積記作.照此規(guī)律作下去,則=____________________ .

查看答案和解析>>

同步練習(xí)冊(cè)答案