【題目】圖1和圖2,半圓O的直徑AB=2,點P(不與點A,B重合)為半圓上一點,將圖形延BP折疊,分別得到點A,O的對稱點A′,O′,設(shè)∠ABP=α.
(1)當(dāng)α=15°時,過點A′作A′C∥AB,如圖1,判斷A′C與半圓O的位置關(guān)系,并說明理由.
(2)如圖2,當(dāng)α= °時,BA′與半圓O相切.當(dāng)α= °時,點O′落在上.
(3)當(dāng)線段BO′與半圓O只有一個公共點B時,求α的取值范圍.
【答案】(1)A′C與半圓O相切;理由見解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.
【解析】
試題(1)過O作OD⊥A′C于點D,交A′B于點E,利用含30°角的直角三角形的性質(zhì)可求得DE+OE=A′B=AB=OA,可判定A′C與半圓相切;
(2)當(dāng)BA′與半圓相切時,可知OB⊥A′B,則可知α=45°,當(dāng)O′在上時,連接AO′,則可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;
(3)利用(2)可知當(dāng)α=30°時,線段O′B與圓交于O′,當(dāng)α=45°時交于點B,結(jié)合題意可得出滿足條件的α的范圍.
試題解析:(1)相切,理由如下:
如圖1,過O作OD過O作OD⊥A′C于點D,交A′B于點E,
∵α=15°,A′C∥AB,
∴∠ABA′=∠CA′B=30°,
∴DE=A′E,OE=BE,
∴DO=DE+OE=(A′E+BE)=AB=OA,
∴A′C與半圓O相切;
(2)當(dāng)BA′與半圓O相切時,則OB⊥BA′,
∴∠OBA′=2α=90°,
∴α=45°,
當(dāng)O′在上時,如圖2,
連接AO′,則可知BO′=AB,
∴∠O′AB=30°,
∴∠ABO′=60°,
∴α=30°,
(3)∵點P,A不重合,∴α>0,
由(2)可知當(dāng)α增大到30°時,點O′在半圓上,
∴當(dāng)0°<α<30°時點O′在半圓內(nèi),線段BO′與半圓只有一個公共點B;
當(dāng)α增大到45°時BA′與半圓相切,即線段BO′與半圓只有一個公共點B.
當(dāng)α繼續(xù)增大時,點P逐漸靠近點B,但是點P,B不重合,
∴α<90°,
∴當(dāng)45°≤α<90°線段BO′與半圓只有一個公共點B.
綜上所述0°<α<30°或45°≤α<90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點從開始沿折線以的速度運動,點從開始沿邊以的速度移動,如果點、分別從、同時出發(fā),當(dāng)其中一點到達(dá)時,另一點也隨之停止運動,設(shè)運動時間為,當(dāng)________時,四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周未,小麗騎自行車從家出發(fā)到野外郊游,從家出發(fā)0.5小時到達(dá)甲地,游玩一段時間后按原速前往乙地,小麗離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,行駛10分鐘時,恰好經(jīng)過甲地,如圖是她們距乙地的路程y(km)與小麗離家時間x(h)的函數(shù)圖象.
(1)小麗騎車的速度為 km/h,H點坐標(biāo)為 ;
(2)求小麗游玩一段時間后前往乙地的過程中y與x的函數(shù)關(guān)系;
(3)小麗從家出發(fā)多少小時后被媽媽追上?此時距家的路程多遠(yuǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一棵樹CD的10m高處的B點有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過的路程相等,試問這棵樹多高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),設(shè)慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.
根據(jù)圖象進(jìn)行以下探究:
⑴請問甲乙兩地的路程為 ;
⑵求慢車和快車的速度;
⑶求線段BC所表示的y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
⑷如果設(shè)慢車行駛的時間為x(h),快慢兩車到乙地的距離分別為y1(km)、y2(km),請在右圖中畫出y1、y2與x的函數(shù)圖像.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△A′B′C′.
(2)四邊形 ABCA′的面積為_____;
(3)在直線l上找一點P,使PA+PB的長最短,則這個最短長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P,Q是直線y=x+2上的兩點,點P在點Q的左側(cè),且滿足OP=OQ,OP⊥OQ,則點Q的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有一塊長方形活動場地,長為米,寬比長少米,實施“陽光體育”行動以后,學(xué)校為了擴(kuò)大學(xué)生的活動場地,讓學(xué)生能更好地進(jìn)行體育活動,將操場的長和寬都增加米.
(1)求活動場地原來的面積是多少平方米.(用含的代數(shù)式表示)
(2)若,求活動場地面積增加后比原來多多少平方米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com