【題目】如圖,在每個小正方形的邊長為 1 的網(wǎng)格中,點 A、B、C 均在格點上,BC 與網(wǎng)格交于點 P,(1)△ABC 的面積等于______;(2)在 AC 邊上有一點 Q,當 PQ 平分△ABC 的面積時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出 PQ,并簡要說明點 Q 的位置是如何找到的(不要求證明)_____________.
【答案】9; 圖見解析,選取BC的中點D;選取點F,連接AF與網(wǎng)格交于點E,連接DE(DE與AP平行且相等)與AC交于點Q;連接PQ.
【解析】
(1)利用分割法求得△ABC的面積即可;
(2)根據(jù)圖中P點的位置可得CD=2BP=2DP,再根據(jù)等高的兩個三角形的面積比等于底的比,結(jié)合已知PQ 平分△ABC 的面積,可得CQ:AC=2:3,然后通過作圖找出點Q即可.(方法不唯一)
解:(1)如圖
S△ABC
故答案為:9
(2)根據(jù)圖中P點的位置可得CD=2BP=2DP,設AC 邊上有一點 Q,使PQ 平分△ABC 的面積,且設的面積為x,則的面積為2x,
∴的面積為3x,
∵PQ 平分△ABC 的面積,
∴的面積為6x,
∵PC=BC
∴的面積為4.5x;
∴CQ:AC=3x:4.5x=2:3;
方法一:如圖,選取BC的中點D;選取點F,連接AF與網(wǎng)格交于點E,連接DE(DE與AP平行且相等)與AC交于點Q;連接PQ,則點Q即為所求.
根據(jù)題意可得AF//DP,且AE=DP
∴四邊形APDE為平行四邊形;
∴AP//DQ
∴CQ:AC=CD:CP=2:3;
方法二:如圖,選取E、F,連接EF與AC交于點Q,連接PQ則點Q即為所求.
∵AE//CF
∴
∴AQ :CQ =AE:CF=1:2
∴CQ:AC=2:3;
科目:初中數(shù)學 來源: 題型:
【題目】已知平行四邊形中, ,垂足為與的延長線相交于,且,連接;
(1)如圖,求證:四邊形是菱形;
(2)如圖,連接,若,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于反比例函數(shù)y=,下列說法不正確的是( 。
A. 函數(shù)圖象分別位于第一、第三象限
B. 當x>0時,y隨x的增大而減小
C. 函數(shù)圖象經(jīng)過點(1,2)
D. 若點A(x1,y1),B(x2,y2)都在函數(shù)圖象上,且x1<x2,則y1>y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交x軸正半軸于點A、點B,交y軸于點C, 直線y=-x+6經(jīng)過點B、點C;
(1)求拋物線的解析式 ;
(2)點D在x軸下方的拋物線上,連接DB、DC,點D的橫坐標為t,△BCD的面積為S,求S與t的函數(shù)關系式,并直接寫出自變量t的取值范圍 ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,,,點E是邊BC的中點動點P從點A出發(fā),沿著AB運動到點B停止,速度為每秒鐘1個單位長度,連接PE,過點E作PE的垂線交射線AD與點Q,連接PQ,設點P的運動時間為t秒.
當時,______;
是否存在這樣的t值,使為等腰直角三角形?若存在,求出相應的t值,若不存在,請說明理由;
當t為何值時,的面積等于10?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC 中,E、F 分別為線段 AB、AC 上的點(不與 A、B、C 重合)
(1)如圖 1,若 EF//BC,求證:
(2)如圖 2,若 EF 不與 BC 平行,(1)中的結(jié)論是否仍然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】節(jié)假日期間向、某商場組織游戲,主持人請三位家長分別帶自己的孩于參加游戲,A、B、C分別表示一位家長,他們的孩子分別對應的是a,b,若主持人分別從三位家長和三位孩予中各選一人參加游戲.
若已選中家長A,則恰好選中自己孩子的概率是______.
請用畫樹狀圖或列表法求出被選中的恰好是同一家庭成員的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.
(1)求每張門票原定的票價;
(2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.
(1)求B點到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com