【題目】如圖,在□ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是( ) .

①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.
A.①②③
B.①③
C.①②④
D.①②③④

【答案】C
【解析】解:①∵F是AD的中點,
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故此選項正確;
②延長EF,交CD延長線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點,
∴AF=FD,
在△AEF和△DFM中,

∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正確;
③∵EF=FM,
∴S△EFC=S△CFM ,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△EFC錯誤;
④設(shè)∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此選項正確.
故選C.
【考點精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC中,AH⊥BC于H,E,D,F(xiàn)分別是AB,BC,AC的中點,則四邊形EDHF是(
A.一般梯形
B.等腰梯形
C.直角梯形
D.直角等腰梯形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(2a23的結(jié)果是(
A.2a6
B.6a6
C.8a6
D.8a5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某地七年級男生的身高情況,從當?shù)啬硨W校選取了一個容量為60的樣本,60名男生的身高(單位:cm)情況如下表所示(尚不完整),則表中ab的值分別為(  )

分組

147.5~157.5

157.5~167.5

167.5~177.5

177.5~187.5

頻數(shù)

10

26

a

百分比

30%

b

A. 18,6 B. 30%,6 C. 18,10% D. 0.3,10%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,在船B的北偏西37°方向上,AP=30海里.

(1)尺規(guī)作圖:過點P作AB所在直線的垂線,垂足為E(要求:保留作圖痕跡,不寫作法);

(2)求船P到海岸線MN的距離(即PE的長);

(3)若船A、船B分別以20海里/時、15海里/時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一張長方形紙片ABCD沿EF折疊后ED與BC的交點為G,D、C分別在M、N的位置上,若∠EFG=55°,則∠2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1 , y1)平移后的對應(yīng)點為P′(x1+6,y1+4).

(1)請在圖中作出△A′B′C′;
(2)寫出點A′、B′、C′的坐標.
(3)求△A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.

(1)求證:DC=DE;

(2)若tan∠CAB=,AB=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD、BEFG均為正方形,連接AG、CE.

(1)求證:AG=CE;

(2)求證:AG⊥CE.

查看答案和解析>>

同步練習冊答案