【題目】如圖,矩形的對角線, 相交于點, 關(guān)于的對稱圖形為.
(1)求證:四邊形是菱形;
(2)連接,若, .
①求的值;
②若點為線段上一動點(不與點重合),連接,一動點從點出發(fā),以的速度沿線段勻速運動到點,再以的速度沿線段勻速運動到點,到達(dá)點后停止運動.當(dāng)點沿上述路線運動到點所需要的時間最短時,求的長和點走完全程所需的時間.
【答案】(1)證明見解析;(2)① ;②和 走完全程所需時間為 .
【解析】試題分析:(1)利用四邊相等的四邊形是菱形進(jìn)行證明即可;
(2)①構(gòu)造直角三角形求即可;
②先確定點沿上述路線運動到點所需要的時間最短時的位置,再計算運到的時間.
試題解析:(1) 四邊形 是矩形, ,
與 交于點O,且 關(guān)于 對稱,
,
,
四邊形 是菱形;
(2)①連接 ,直線 分別交 于點 ,交 于點 ,
關(guān)于 的對稱圖形為 ,
,
在矩形 中, 為 的中點,且O為AC的中點,
為 的中位線 , ,
同理可得: 為 的中點, ,
,
;
②過點P作 交 于點 ,
由 運動到 所需的時間為3s,
由①可得, ,
點O以 的速度從P到A所需的時間等于以 從M運動到A,
即: ,
由O運動到P所需的時間就是OP+MA和最小.
如下圖,當(dāng)P運動到 ,即 時,所用時間最短.
,
在 中,設(shè), ,
,
解得: , ,
和 走完全程所需時間為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線y=-x2+bx+c交x軸于A、B兩點,交y軸于點C,直線y=x+6經(jīng)過A、C兩點.
(1)求拋物線的解析式;
(2)點P是第二象限拋物線上的一個動點,過點P作PQ∥AC,PQ交直線BC于點Q,設(shè)點P的橫坐標(biāo)為t,點Q的橫坐標(biāo)為m,求m與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,作點P關(guān)于直線AC的對稱點點K,連接QK,當(dāng)點K落在直線y=-x上時,求線段QK的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 哥哥的身高比弟弟高是必然事件
B. 今年的12月1日有雨是不確定事件
C. 隨機(jī)擲一枚均勻的硬幣兩次,都是正面朝上是不可能事件
D. “彩票中獎的概率為”表示買5張彩票肯定會中獎
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是的直徑, ,連接.
(1)求證: ;
(2)若直線為的切線, 是切點,在直線上取一點,使所在的直線與所在的直線相交于點,連接.
①試探究與之間的數(shù)量關(guān)系,并證明你的結(jié)論;
②是否為定值?若是,請求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點P是∠ABC內(nèi)一點.
(1)畫圖:①過點P畫BC的垂線,垂足為D;②過點P畫BC的平行線交AB于點E,過點P畫AB的平行線交BC于點F.
(2)∠EPF等于∠B嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)一塊長方形菜地的面積是150 m2,如果它的長減少5 m,那么菜地就變成正方形,若設(shè)原菜地的長為x m,則可列方程為___________________________________;
(2)已知如圖所示的圖形的面積為24,根據(jù)圖中的條件,可列方程為__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下表:
x | 0 | 1 | 2 |
ax2 | 1 | ||
ax2+bx+c | 3 | 3 |
(1)求a、b、c的值,并在表內(nèi)空格處填入正確的數(shù);
(2)請你根據(jù)上面的結(jié)果判斷:
①是否存在實數(shù)x,使二次三項式ax2+bx+c的值為0?若存在,求出這個實數(shù)值;若不存在,請說明理由.
②畫出函數(shù)y=ax2+bx+c的圖象示意圖,由圖象確定,當(dāng)x取什么實數(shù)時,ax2+ bx+c>0?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com