【題目】如圖,已知等腰直角三角形△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓☉O的直徑.
(1)求證:△APE是等腰直角三角形;
(2)證明△APC≌△AEB;
(3)若☉O的直徑為2,求PC2+PB2的值
【答案】(1)見(jiàn)解答;(2)見(jiàn)解答; (3)4
【解析】
(1)由等腰直角三角形△ABC,得∠C=∠ABP=45°,則∠AEP=∠ABP=45°,由∠PAE=90°,即可解決問(wèn)題;
(2)由(1)知,AP=AE,∠PAC=∠BAE,又AC=AB,即可得到△APC≌△AEB;
(3)由(2)得CP=BE,又PE是直徑,則△PBE是直角三角形,則,即可得到.
解:(1)在等腰直角三角形△ABC中,
∴∠C=∠ABP=45°,∠BAC=90°,
∴∠AEP=∠ABP=45°,
∵PE是直徑,
∴∠PAE=90°,
∴∠APE=∠AEP=45°,
∴AP=AE,
∴△APE是等腰直角三角形.
(2)∵△ABC與△APE是等腰直角三角形
∴AP=AE,AC=AB,∠CAB=∠PAE=90°,
∴∠CAB-∠PAB=∠PAE-∠PAB,
即∠PAC=∠BAE,
∴△APC≌△AEB;
(3)由△APC≌△AEB,得CP=BE,
∴PE是直徑,
∴∠PBE=90°,則△PBE是直角三角形,
∴,
∵CP=BE,PE=2,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.
(1)若方程有兩個(gè)實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,⊙O是△ABC的外接圓,AB是直徑,D是⊙O外一點(diǎn)且滿足∠DCA=∠B,連接AD.
(1)求證:CD是⊙O的切線;
(2)若AD⊥CD,CD=2,AD=4,求直徑AB的長(zhǎng);
(3)如圖2,當(dāng)∠DAB=45°時(shí),AD與⊙O交于E點(diǎn),試寫(xiě)出AC、EC、BC之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)分別是A(﹣3,2)B(0,4)C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;
(2)分別連接AB1,BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)A(1,0)和點(diǎn)C(0,3),對(duì)稱軸為直線x=1.
(1)求該二次函數(shù)的關(guān)系式和頂點(diǎn)坐標(biāo);
(2)結(jié)合圖象,解答下列問(wèn)題:
①當(dāng)1<x<2時(shí),求函數(shù)y的取值范圍。
②當(dāng)y<3時(shí),求x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,∠BAD為鈍角,且AE⊥BC,A F⊥CD.
(1) 求證:A、E、C、F四點(diǎn)共圓;
(2) 設(shè)線段 BD與(1)中的圓交于M、N.求證:BM = ND
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的一元二次方程.
(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程有一根小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣有A、B兩個(gè)大型蔬菜基地,共有蔬菜700噸.若將A基地的蔬菜全部運(yùn)往甲市所需費(fèi)用與B基地的蔬菜全部運(yùn)往甲市所需費(fèi)用相同.從A、B兩基地運(yùn)往甲、乙兩市的運(yùn)費(fèi)單價(jià)如下表:
(1)求A、B兩個(gè)蔬菜基地各有蔬菜多少噸?
(2)現(xiàn)甲市需要蔬菜260噸,乙市需要蔬菜440噸.設(shè)從A基地運(yùn)送噸蔬菜到甲市,請(qǐng)問(wèn)怎樣調(diào)運(yùn)可使總運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市茶葉專賣(mài)店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣(mài)店銷售這種品牌茶葉要想平均每周獲利 41600 元,請(qǐng)回答:
(1)每千克茶葉應(yīng)降價(jià)多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的 幾折出售?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com