【題目】在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE∥DB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若∠DAB=60°,且AB=4,求OE的長.
【答案】(1)證明見解析;(2)2.
【解析】
(1)根據(jù)平行四邊形的判定和菱形的判定證明即可;
(2)根據(jù)菱形的性質(zhì)和勾股定理解答即可.
(1)∵AB∥DC,
∴∠CAB=∠ACD.
∵AC平分∠BAD,
∴∠CAB=∠CAD.
∴∠CAD=∠ACD,
∴DA=DC.
∵AB=AD,
∴AB=DC.
∴四邊形ABCD是平行四邊形.
∵AB=AD,
∴四邊形 ABCD是菱形;
(2)∵四邊形 ABCD是菱形,∠DAB=60°,
∴∠OAB=30,∠AOB=90°.
∵AB=4,
∴OB=2,AO=OC=2.
∵CE∥DB,
∴四邊形 DBEC是平行四邊形.
∴CE=DB=4,∠ACE=90°.
∴.
科目:初中數(shù)學 來源: 題型:
【題目】(1)(感知)如圖①,四邊形、均為正方形.與的數(shù)量關(guān)系為________;
(2)(拓展)如圖②,四邊形、均為菱形,且.請判斷與的數(shù)量關(guān)系,并說明理由;
(3)(應(yīng)用)如圖③,四邊形、均為菱形,點在邊上,點在延長線上.若,,的面積為9,則菱形的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,已知直線y=﹣x+8與x軸、y軸分別交于A、B兩點.直線OD⊥直線AB于點D.現(xiàn)有一點P從點D出發(fā),沿線段DO向點O運動,另一點Q從點O出發(fā),沿線段OA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度,當點P運動到O時,兩點都停止.設(shè)運動時間為t秒.
(1)點A的坐標為_____;線段OD的長為_____.
(2)設(shè)△OPQ的面積為S,求S與t之間的函數(shù)關(guān)系(不要求寫出取值范圍),并確定t為何值時S的值最大?
(3)是否存在某一時刻t,使得△OPQ為等腰三角形?若存在,寫出所有滿足條件的t的值;若不存在,則說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC=5cm,BC=8cm,動點N從點C出發(fā),沿線段CB以2cm/s的速度向點B運動,并在達到點B后,立即以同樣的速度返回向點C運動;同時動點M從點B出發(fā),沿折線B﹣A﹣C以1cm/s的速度向點C運動,當點N回到點C時,兩個動點同時停止運動.⊙M是以M為圓心,1cm為半徑的圓,設(shè)運動時間為t(s) (t>0)
(1)tanB= ;
(2)當點M在線段AB上運動,且⊙M與BC相切時,求t的值;
(3)當t為何值時,⊙M與折線B﹣A﹣C的兩個交點在等腰三角形ABC對稱軸的同側(cè),且經(jīng)過交點和點N的直線與⊙M相切?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形 ABCD 的邊長為 2,以點 A 為圓心,1 為半徑作圓,點 E 是⊙A 上的任意 一點,點 E 繞點 D 按逆時針方向轉(zhuǎn)轉(zhuǎn) 90°,得到點 F,接 AF,則 AF 的最大值是______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解“陽光體育”活動的開展情況,從全校2000名學生中,隨機抽取部分學生進行問卷調(diào)查(每名學生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學生共有 人,并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,m= ,n= ,表示區(qū)域C的圓心角為 度;
(3)全校學生中喜歡籃球的人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 觀察下列兩個等式:2+2=2×2,3+=3×,給出定義如下:我們稱使等式a+b=ab成立的一對有理數(shù)a,b為“有趣數(shù)對”,記為(a,b)如:數(shù)對(2,2),(3,)都是“有趣數(shù)對”.
(1)數(shù)對(0,0),(5,)中是“有趣數(shù)對”的是 ;
(2)若(a,)是“有趣數(shù)對”,求a的值;
(3)請再寫出一對符合條件的“有趣數(shù)對” ;
(注意:不能與題目中已有的“有趣數(shù)對”重復)
(4)若(a2+a,4)是“有趣數(shù)對”求3﹣2a2﹣2a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD中,F是AB上一點,H是BC延長線上一點,連接FH,將△FBH沿FH翻折,使點B的對應(yīng)點E落在AD上,EH與CD交于點G,連接BG交FH于點M,當GB平分∠CGE時,BM=2,AE=8,則ED=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。
A. 2, B. 2,1 C. 4, D. 4,3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com