【題目】如圖,已知線段AC為⊙O的直徑,PA為⊙O的切線,切點為A,B為⊙O上一點,且BC∥PO.

(1)求證:PB為⊙O的切線;
(2)若⊙O的半徑為1,PA=3,求BC的長.

【答案】
(1)證明:連接OB,

∵∠BCA= ,

又∵BC∥OP,

∴∠POA=∠BCA,

∴∠POA=∠BOP,

在△AOP與△BOP中, ,

∴△AOP≌△BOP,

∴∠PBO=∠PAO,

又∵PA為⊙O的切線,

∴∠PAO=90°,

∴∠OBP=90°,

又OB為⊙O的半徑,

∴PB為⊙O的切線;


(2)解:過O作OH⊥BC于H,則CH= BC,

在Rt△AOP中,OP2=PA2+OA2=32+12=10,

又∵OP>0,

∴OP=

∵∠POA=∠BCA,

∴cos∠BCA=cos∠POA=

在Rt△OHC中,OC=1,cos∠BCA= ,

∴CH= ,

∴BC=2CH=


【解析】(1)要證PB為⊙O的切線,需要證明PB垂直于過B點的半徑,為此連接OB,先證△AOP≌△BOP可得∠PBO=∠PAO,由題意可得∠PAO=90°,即可得證;
(2)連接AB,在Rt△AOP中由勾股定理可求得OP,易求得cos∠POA,又∠POA=∠BCA,可得cos∠BCA,在Rt△OHC中利用三角函數(shù)可求出CH,由BC=2CH可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,已知:平行四邊形ABCD中,∠BCD的平分線CE交邊ADE,∠ABC的平分線BGCEF,交ADG.求證:AE=DG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點DAB上,AD=AC,AF⊥CDCD于點E,交CB于點F,則CF的長是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在圖中作出△ABC關(guān)于直線m對稱的△ABC′,并寫出A′、B′、C′三點的坐標(2)猜想:坐標平面內(nèi)任意點Pxy)關(guān)于直線m對稱點P′的坐標為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【操作發(fā)現(xiàn)】
如圖①,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上.

(1)請按要求畫圖:將△ABC繞點A按順時針方向旋轉(zhuǎn)90°,點B的對應(yīng)點為B′,點C的對應(yīng)點為C′,連接BB′;
(2)在(1)所畫圖形中,∠AB′B=
(3)【問題解決】
如圖②,在等邊三角形ABC中,AC=7,點P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過觀察、分析、思考,對上述問題形成了如下想法:
想法一:將△APC繞點A按順時針方向旋轉(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點A按逆時針方向旋轉(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.

請參考小明同學(xué)的想法,完成該問題的解答過程.(一種方法即可)
(4)【靈活運用】
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),求BD的長(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點O,ADBC交于點P,BECD交于點Q,連接PQ,以下五個結(jié)論:①AD=BE;PQAE;CP=CQ;BO=OE;⑤∠AOB=60°,恒成立的結(jié)論有

A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABE為等腰直角三角形,ABE=90°,BC=BD,FAD=30°

(1)求證:ABC≌△EBD

(2)求AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】說明理由

如圖,∠1+∠2=230°,b∥c, 則∠1、∠2、∠3、∠4各是多少度?

解:∵ ∠1=∠2 (_________________________)

∠1+∠2=230°

∴∠1 =∠2 =________(填度數(shù))

bc

∴∠4 =∠2= ________(填度數(shù))

( )

∠2 +∠3 =180° ( )

∴∠3 =180°-∠2 =_________(填度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中有一個小球,上面分別標有字母a,b,c,每個小球除字母不同外其余均相同,小園同學(xué)從口袋中隨機摸出一個小球,記下字母后放回且攪勻,再從可口袋中隨機摸出一個小球記下字母.用畫樹狀圖(或列表)的方法,求小園同學(xué)兩次摸出的小球上的字母相同的概率.

查看答案和解析>>

同步練習(xí)冊答案