【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與的圖象上,對角線軸,且于點P.已知點B的橫坐標為4.
(1)若點P的縱坐標為2,求直線AB的函數(shù)表達式.
(2)若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】為了加強學生課外閱讀,開闊視野,某校開展了“書香校園,誦讀經(jīng)典”活動,學校隨機抽查了部分學生,對他們每天的課外閱讀時間進行調(diào)查,并將調(diào)查統(tǒng)計的結(jié)果分為四類:每天誦讀時間分鐘的學生記為類,20分鐘分鐘記為類,40分鐘分鐘記為類,分鐘記為類,收集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)這次共抽取了__________名學生進行調(diào)查統(tǒng)計,扇形統(tǒng)計圖中類所對應的扇形圓心角大小為___________;
(2)將條形統(tǒng)計圖補充完整;
(3)如果該校共有2000名學生,請你估計該校類學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD對角線交于點E,△ABD的外接圓⊙O交AC于點F.若FB=FC.
(1)證明:=FEFA;
(2)證明:BC是⊙O的切線;
(3)若EF=2,求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究,
(1)如圖①,在矩形ABCD中,AB=2AD,P為CD邊上的中點,試比較∠APB和∠ADB的大小關系,并說明理由;
(2)如圖②,在正方形ABCD中,P為CD上任意一點,試問當P點位于何處時∠APB最大?并說明理由;
問題解決
(3)某兒童游樂場的平面圖如圖③所示,場所工作人員想在OD邊上點P處安裝監(jiān)控裝置,用來監(jiān)控OC邊上的AB段,為了讓監(jiān)控效果最佳,必須要求∠APB最大,已知:∠DOC=60°,OA=400米,AB=200米,問在OD邊上是否存在一點P,使得∠APB最大,若存在,請求出此時OP的長和∠APB的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線過點.
(1)求出拋物線解析式的一般式;
(2)拋物線上的動點在一次函數(shù)的圖象下方,求面積的最大值,并求出此時點的坐標;
(3)若點為軸上任意一點,在(2)的結(jié)論下,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉疊放在一起,若重疊都分構(gòu)成的四邊形ABCD中,AB=3,BD=4.則AC的長為_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:我們把對角線互相垂直的四邊形叫做神奇四邊形.順次連接四邊形各邊中點得到的四邊形叫做中點四邊形.
(1)判斷:
①在平行四邊形、矩形、菱形中,一定是神奇四邊形的是 ;
②命題:如圖1,在四邊形中,則四邊形是神奇四邊形.此命題是_____(填“真”或“假”)命題;
③神奇四邊形的中點四邊形是
(2)如圖2,分別以的直角邊和斜邊為邊向外作正方形和正方形,連接
①求證:四邊形是神奇四邊形;
②若,求的長;
(3)如圖3,四邊形是神奇四邊形,若分別是方程的兩根,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】龍人文教用品商店欲購進、兩種筆記本,用160元購進的種筆記本與用240元購進的種筆記本數(shù)量相同,每本種筆記本的進價比每本種筆記本的進價貴10元.
(1)求、兩種筆記本每本的進價分別為多少元?
(2)若該商店準備購進、兩種筆記本共100本,且購買這兩種筆記本的總價不超過2650元,則至少購進種筆記本多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與直線都經(jīng)過,兩點,該拋物線的頂點為.
(1)求拋物線和直線的解析式;
(2)設點是直線下方拋物線上的一動點,求面積的最大值,并求面積最大時,點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com