【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),ABCD的頂點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)D的坐標(biāo)為(0,2),點(diǎn)Bx軸的正半軸上,點(diǎn)E為線段AD的中點(diǎn).

)如圖1,求∠DAO的大小及線段DE的長(zhǎng);

)過(guò)點(diǎn)E的直線lx軸交于點(diǎn)F,與射線DC交于點(diǎn)G.連接OEOEF′OEF關(guān)于直線OE對(duì)稱的圖形,記直線EF′與射線DC的交點(diǎn)為H,EHC的面積為3

①如圖2,當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求GH,DG的長(zhǎng);

②當(dāng)點(diǎn)G在點(diǎn)H的右側(cè)時(shí),求點(diǎn)F的坐標(biāo)(直接寫出結(jié)果即可).

【答案】30°,2;(①3+-3+;②F(﹣5﹣,0).

【解析】解:(Ⅰ)∵A(﹣2,0),D(0,2)∴AO=2,DO=2,∴tan∠DAO==,

∴∠DAO=60°,∴∠ADO=30°,∴AD=2AO=4,∵點(diǎn)E為線段AD中點(diǎn),∴DE=2;

(Ⅱ)①如圖2,

過(guò)點(diǎn)E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,

∵CD∥AB,∴∠DGE=∠OFE,

∵△OEF′是△OEF關(guān)于直線OE的對(duì)稱圖形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,

∵點(diǎn)E是AD的中點(diǎn),∴OE=AD=AE,

∵∠EAO=60°,∴△EAO是等邊三角形,∴∠EOA=60°,∠AEO=60°,

∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,

∴∠EOF′=∠AEO,∴AD∥OF′,∴∠OF′E=∠DEH,∴∠DEH=∠DGE,

∵∠DEH=∠EDG,∴△DHE∽△DEG,∴,∴DE2=DG×DH,

設(shè)DG=x,則DH=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣,∴DG=﹣3+

②如圖3,

過(guò)點(diǎn)E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,

∵CD∥AB,∴∠DHE=∠OFE,

∵△OEF′是△OEF關(guān)于直線OE的對(duì)稱圖形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,

∵點(diǎn)E是AD的中點(diǎn),∴OE=AD=AE,

∵∠EAO=60°,∴△EAO是等邊三角形,∴∠EOA=60°,∠AEO=60°,

∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,∴∠EOF′=∠AEO,∴AD∥OF′,

∴∠OF′E=∠DEH,∴∠DEG=∠DHE,

∵∠DEG=∠EDH,∴△DGE∽△DEH,∴,∴DE2=DG×DH,

設(shè)DH=x,則DG=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣,

∴DH=﹣3+.∴DG=3+∴DG=AF=3+,∴OF=5+,∴F(﹣5﹣,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F為對(duì)角線BD上的兩點(diǎn),且∠DAE=∠BCF

求證:(1AECF;

2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)的圖象過(guò)M(1,3),N(-2,12)兩點(diǎn).

(1)求函數(shù)的解析式;

(2)試判斷點(diǎn)P(2a,-6a+8)是否在函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前我市校園手機(jī)現(xiàn)象越來(lái)越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,重慶一中初三(1)班數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的態(tài)度(態(tài)度分為:A.無(wú)所謂;B.基本贊成;C.贊成;D.反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長(zhǎng);

2)求出圖2中扇形C所對(duì)的圓心角的度數(shù),并將圖1補(bǔ)充完整;

3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我校11000名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度;

4)在此次調(diào)查活動(dòng)中,初三(1)班和初三(2)班各有2位家長(zhǎng)對(duì)中學(xué)生帶手機(jī)持反對(duì)態(tài)度,現(xiàn)從中選2位家長(zhǎng)參加學(xué)校組織的家;顒(dòng),用列表法或畫樹狀圖的方法求選出的2人來(lái)自不同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市開展一項(xiàng)自行車旅游活動(dòng),線路需經(jīng)A、B、C、D四地,如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問(wèn)沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°0.25,cos15°0.97,tan15°0.27,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的中線,,于點(diǎn)的中點(diǎn),連接.

1)求證:四邊形是平行四邊形;

2)若四邊形的面積為,請(qǐng)直接寫出圖中所有面積是的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)直線上一點(diǎn),作,,若,①你還能求出哪些角的度數(shù)_____________________(至少寫出兩個(gè),直角和平角除外);

②與互余的角有__________,它們的數(shù)量關(guān)系是________;由此你得出的結(jié)論是_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角三角形ABC中,∠ABC=90,將三角形ABC繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)一定角度得到三角形BEF,EFBC于點(diǎn)G

1)若,當(dāng)∠ABE等于多少度時(shí),;

2)若,,,當(dāng)時(shí),

①求BG的長(zhǎng);

②連接AFBE于點(diǎn)O,連接AE(如圖2),設(shè)三角形EOF的面積為m,求三角形AEO的面積(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M與菱形ABCD在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(﹣3,1),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(1,﹣),點(diǎn)D在x軸上,且點(diǎn)D在點(diǎn)A的右側(cè).

(1)求菱形ABCD的周長(zhǎng);

(2)若M沿x軸向右以每秒2個(gè)單位長(zhǎng)度的速度平移,菱形ABCD沿x軸向左以每秒3個(gè)單位長(zhǎng)度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為t(秒),當(dāng)M與AD相切,且切點(diǎn)為AD的中點(diǎn)時(shí),連接AC,求t的值及MAC的度數(shù);

(3)在(2)的條件下,當(dāng)點(diǎn)M與AC所在的直線的距離為1時(shí),求t的值.

【答案】1菱形的周長(zhǎng)為8;(2t=,MAC=105°;(3)當(dāng)t=1﹣或t=1+時(shí),圓M與AC相切.

【解析】試題分析:1)過(guò)點(diǎn)BBEAD,垂足為E.由點(diǎn)A和點(diǎn)B的坐標(biāo)可知:BE=,AE=1,依據(jù)勾股定理可求得AB的長(zhǎng),從而可求得菱形的周長(zhǎng);(2)記 Mx軸的切線為FAD的中點(diǎn)為E.先求得EF的長(zhǎng),然后根據(jù)路程=時(shí)間×速度列出方程即可;平移的圖形如圖3所示:過(guò)點(diǎn)BBEAD,垂足為E,連接MF,F MAD的切點(diǎn).由特殊銳角三角函數(shù)值可求得∠EAB=60°,依據(jù)菱形的性質(zhì)可得到∠FAC=60°,然后證明AFM是等腰直角三角形,從而可得到∠MAF的度數(shù),故此可求得∠MAC的度數(shù);(3)如圖4所示:連接AM,過(guò)點(diǎn)作MNAC,垂足為N,作MEAD,垂足為E.先求得∠MAE=30°,依據(jù)特殊銳角三角函數(shù)值可得到AE的長(zhǎng),然后依據(jù)3t+2t=5-AE可求得t的值;如圖5所示:連接AM,過(guò)點(diǎn)作MNAC,垂足為N,作MEAD,垂足為E.依據(jù)菱形的性質(zhì)和切線長(zhǎng)定理可求得∠MAE=60°,然后依據(jù)特殊銳角三角函數(shù)值可得到EA=,最后依據(jù)3t+2t=5+AE.列方程求解即可.

試題解析:( 如圖1所示:過(guò)點(diǎn),垂足為

, ,

,

∵四邊形為菱形,

,

∴菱形的周長(zhǎng)

)如圖2所示,⊙軸的切線為, 中點(diǎn)為,

,

,

,且中點(diǎn),

,

,

解得

平移的圖形如圖3所示:過(guò)點(diǎn),

垂足為,連接, 為⊙切點(diǎn),

∵由()可知, , ,

,

,

∵四邊形是菱形,

,

切線,

,

的中點(diǎn),

,

是等腰直角三角形,

,

)如圖4所示:連接,過(guò)點(diǎn)作,垂足為,作,垂足為,

∵四邊形為菱形, ,

、是圓的切線

。

,

,

如圖5所示:連接,過(guò)點(diǎn)作,垂足為,作,垂足為,

∵四邊形為菱形, ,

,

、是圓的切線,

,

,

,

,

綜上所述,當(dāng)時(shí),圓相切.

點(diǎn)睛:此題是一道圓的綜合題.圓中的方法規(guī)律總結(jié):1、分類討論思想:研究點(diǎn)、直線和圓的位置關(guān)系時(shí),就要從不同的位置關(guān)系去考慮,即要全面揭示點(diǎn)、直線和元的各種可能的位置關(guān)系.這種位置關(guān)系的考慮與分析要用到分類討論思想.1、轉(zhuǎn)化思想:(1)化“曲面”為“平面”(2)化不規(guī)則圖形面積為規(guī)則圖形的面積求解.3、方程思想:再與圓有關(guān)的計(jì)算題中,除了直接運(yùn)用公式進(jìn)行計(jì)算外,有時(shí)根據(jù)圖形的特點(diǎn),列方程解答,思路清楚,過(guò)程簡(jiǎn)捷.

型】解答
結(jié)束】
28

【題目】如圖1,在平面直角坐標(biāo)系中,直線lx軸、y軸分別交于點(diǎn)B40)、C0,3),點(diǎn)Ax軸負(fù)半軸上一點(diǎn),AMBC于點(diǎn)My軸于點(diǎn)N0, ).已知拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A,BC

(1)求拋物線的函數(shù)式;

2)連接AC,點(diǎn)D在線段BC上方的拋物線上,連接DCDB,若BCDABC面積滿足SBCD= SABC 求點(diǎn)D的坐標(biāo);

(3)如圖2,EOB中點(diǎn),設(shè)F為線段BC上一點(diǎn)(不含端點(diǎn)),連接EF.一動(dòng)點(diǎn)PE出發(fā),沿線段EF以每秒3個(gè)單位的速度運(yùn)動(dòng)到F,再沿著線段PC以每秒5個(gè)單位的速度運(yùn)動(dòng)到C后停止.若點(diǎn)P在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少,請(qǐng)直接寫出最少時(shí)間和此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案