【題目】已知直線AB∥CD,點P為直線l上一點,嘗試探究并解答:
(1)如圖1,若點P在兩平行線之間,∠1=23°,∠2=35°,則∠3= ;
(2)探究圖1中∠1,∠2與∠3之間的數(shù)量關系,并說明理由;
(3)如圖2,若點P在CD的上方,探究∠1,∠2與∠3之間有怎樣的數(shù)量關系,并說明理由;
(4)如圖3,若∠PCD與∠PAB的平分線交于點P1,∠DCP1與∠BAP1的平分線交于點P2,∠DCP2與∠BAP2的平分線交于點P3,…,∠DCPn-1與∠BAPn-1的平分線交于點Pn,若∠PCD=α,∠PAB=β,直接寫出∠APnC的度數(shù)(用含α與β的代數(shù)式表示).
【答案】(1);(2),理由見解析;(3),理由見解析;(4).
【解析】
(1)如圖1(見解析),過點P作,根據(jù)平行線的判定可得,再根據(jù)平行線的性質可得,然后根據(jù)角的和差即可得;
(2)用題(1)的方法即可得;
(3)如圖2(見解析),過點P作,根據(jù)平行線的判定可得,再根據(jù)平行線的性質可得,然后根據(jù)角的和差即可得;
(4)先根據(jù)角平分線的定義、題(3)的結論求出的度數(shù),再歸納類推出一般規(guī)律即可.
(1)如圖1,過點P作
;
(2)結論為,理由如下:
如圖1,過點P作
;
(3)結論為,理由如下:
如圖2,過點P作
;
(4)由題意得:平分,平分;平分,平分;并且點均在CD的上方
由角平分線的定義得:
由(3)的結論得:
同理可得:
歸納類推得:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,點P從點A出發(fā),沿A→B→C以1cm/s的速度運動.設△APC的面積為s(m),點P的運動時間為t(s),變量S與t之間的關系如圖2所示,則在運動過程中,S的最大值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠B=60°,點G是CD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店從廠家選購甲、乙兩種商品,乙商品每件進價比甲商品每件進價少20元,若購進甲商品5件和乙商品4件共需要1000元;
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)若甲種商品的售價為每件145元,乙種商品的售價為每件120元,該商店準備購進甲、乙兩種商品共40件,且這兩種商品全部售出后總利潤不少于870元,則甲種商品至少可購進多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說明點D在⊙O上;
(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;
(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,點C和點M重合,點B、C(M)、N在同一直線上,令Rt△PMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設移動x秒后,矩形ABCD與△PMN重疊部分的面積為y,則y與x的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=a(x﹣1)2過點(3,1),D為拋物線的頂點.
(1)求拋物線的解析式;
(2)若點B、C均在拋物線上,其中點B(0,),且∠BDC=90°,求點C的坐標;
(3)如圖,直線y=kx+4﹣k與拋物線交于P、Q兩點.
①求證:∠PDQ=90°;
②求△PDQ面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市教育局為了了解初二學生每學期參加綜合實踐活動的情況,隨機抽樣調查了某校初二學生一個學期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,回答下列問題:
(1)扇形統(tǒng)計圖中a的值為 ;
(2)補全頻數(shù)分布直方圖;
(3)在這次抽樣調查中,眾數(shù)是 天,中位數(shù)是 天;
(4)請你估計該市初二學生每學期參加綜合實踐活動的平均天數(shù)約是多少?(結果保留整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com