【題目】如圖:在數(shù)軸上點A表示數(shù)a,點B表示數(shù)b,點C表示數(shù)c,a是多項式2x24x+1的一次項系數(shù),b是最小的正整數(shù),單項式x2y4的次數(shù)為c.
(1)a=___,b=___,c=___;
(2)若將數(shù)軸在點B處折疊,則點A與點C___重合(填“能”或“不能”);
(3)點A,B,C開始在數(shù)軸上運動,若點C以每秒1個單位長度的速度向右運動,同時,點A和點B分別以每秒3個單位長度和2個單位長度的速度向左運功,t分鐘過后,若點A與點B之間的距離表示為AB,點B與點C之間的距離表示為BC,則AB=___,BC=___(用含t的代數(shù)式表示);
(4)請問:3ABBC的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值。
【答案】(1)-4, 1, 6;(2)能;(3)t+5,3t+5;(4)10
【解析】
(1)根據(jù)多項式與單項式的概念即可求出答案.
(2)只需要判斷A、C是否關于B對稱即可.
(3)根據(jù)A、B、C三點運動的方向即可求出答案.
(4)將(3)問中的AB與BC的表達式代入即可判斷.
(1)∵多項式2x24x+1的一次項系數(shù)是-4,最小的正整數(shù)是1,單項式x2y4的次數(shù)為6,
∴a=-4,b=1,c=6;
(2)能重合,由于-4與6的中點為1,故將數(shù)軸在點B處折疊,則點A與點C能重合;
(3)由于點A和點B分別以每秒3個單位長度和2個單位長度的速度向左運動,
∴t秒鐘后,AB=3t+1-(-4)-2t=t+5;
由于點C以每秒1個單位長度的速度向右運動,
∴t秒鐘后,BC=2t+6-1+t=3t+5;
(4)3AB-BC=3(t+5)-3t-5=3t+15-3t-5=10,
∴3AB-BC的值不會隨著時間t的變化而改變.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA是⊙O的切線,點C在⊙O上,CB∥PO.
(1)判斷PC與⊙O的位置關系,并說明理由;
(2)若AB=6,CB=4,求PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點 C、D是線段AB上兩點(不與端點A、B重合),點A、B、C、D四點組成的所有線段的長度都是正整數(shù),且總和為29,則線段AB的長度為__________________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐘鼓樓AN上懸掛一條幅AB,謝高在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向鐘鼓樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為45°,此時謝高距鐘鼓樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且M、E、C、N在同一條直線上,求條幅的長度(結果精確到1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為⊙O的直徑, D、T是圓上的兩點,且AT平分∠BAD,過點T作AD延長線的垂線PQ,垂足為C.
(1)求證:PQ是⊙O的切線;
(2)若⊙O的半徑為2,,求弦AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線與軸交于A、B兩點,點P在函數(shù)的圖象上,若△PAB為直角三角形,則滿足條件的點P的個數(shù)為( ).
A. 2個 B. 3個 C. 4個 D. 6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題
(1)30-(-12)-(-25)-18+(-10)
(2) (-+-).
(3)-52÷(-3)2×(-5)3÷[-(-5)2]
(4)(-2+3)-(2-)+6
(5)-[(-)+4]-
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實“兩點確定一條直線”來解釋的是( 。
①用兩顆釘子就可以把木條固定在墻上;②把筆尖看成一個點,當這個點運動時便得到一條線;③把彎曲的公路改直,就能縮短路程;④植樹時,只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上.
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com