如圖,直線數(shù)學(xué)公式交x軸于點(diǎn)A,交y軸于點(diǎn)B,第一象限內(nèi)的點(diǎn)P(a,b)是經(jīng)過(guò)點(diǎn)B的直線n上的一點(diǎn),過(guò)點(diǎn)P作PD⊥y軸于點(diǎn)D,連結(jié)PA.
(1)求點(diǎn)A、B的坐標(biāo);
(2)若△ABO與△BDP全等,試求直線n的函數(shù)解析式;
(3)將△ABP沿直線m對(duì)折,點(diǎn)P恰好與點(diǎn)O重合,試求點(diǎn)P的坐標(biāo).

解:(1)對(duì)于直線y=-x+3,令x=0,得到y(tǒng)=3;令y=0,得到x=4,
則A(4,0),B(0,3);
(2)當(dāng)△BDP≌△AOB時(shí),BD=AO=4,DP=BO=3,
∴OD=OB+BD=3+4=7,
∴P(3,7),
設(shè)直線n為y=kx+b,將B與P坐標(biāo)代入得:,
解得:
此時(shí)直線n解析式為y=x+3;
當(dāng)△PDB≌△AOB時(shí),BD=OB=3,PD=OA=4,
∴OB+BD=3+3=6,
∴P(4,6),
設(shè)直線n為y=mx+n,將B與P代入得:,
解得:,
此時(shí)直線n解析式為y=x+3;
(3)過(guò)O與P作直線OP,與AB交于點(diǎn)Q,
將△ABP沿直線m對(duì)折,點(diǎn)P恰好與點(diǎn)O重合時(shí),△AOB≌△APB,
∴BO=BP,OA=PA,
∴直線AB垂直平分線段OP,
∵直線AB解析式為y=-x+3,斜率為-,
∴直線OP斜率為,即直線OP解析式為y=x,
聯(lián)立兩函數(shù)解析式得:,
解得:,
∴Q(),
∵Q為線段OP的中點(diǎn),
∴P(,).
分析:(1)對(duì)于直線m,令x與y分別為0求出對(duì)應(yīng)y與x的值,即可確定出A與B的坐標(biāo);
(2)分兩種情況考慮:當(dāng)△BDP≌△AOB時(shí),BD=AO=4,DP=BO=3,由OB+BD求出OD的長(zhǎng),得到P的坐標(biāo),設(shè)直線n為y=kx+b,將B與P坐標(biāo)代入得到關(guān)于k與b的方程組,求出方程組的解得到k與b的值,即可求出此時(shí)直線n解析式;當(dāng)△PDB≌△AOB時(shí),BD=OB=3,PD=OA=4,由OB+BD求出OD的長(zhǎng),求出P的坐標(biāo),設(shè)直線n為y=mx+n,將B與P代入得到關(guān)于m與n的方程組,求出方程組的解得到m與n的值,即可確定出直線n的解析式;
(3)過(guò)O與P作直線OP,與AB交于點(diǎn)Q,將△ABP沿直線m對(duì)折,點(diǎn)P恰好與點(diǎn)O重合時(shí),△AOB≌△APB,可得出BO=BP,OA=PA,進(jìn)而確定出AB垂直平分線段OP,由直線AB的斜率求出直線OP的斜率,求出直線OP的解析式,與直線AB解析式聯(lián)立求出Q的坐標(biāo),由Q為線段OP的中點(diǎn),利用中點(diǎn)坐標(biāo)公式即可求出P的坐標(biāo).
點(diǎn)評(píng):此題屬于一次函數(shù)綜合題,涉及的知識(shí)有:直線與坐標(biāo)軸的交點(diǎn),待定系數(shù)法求一次函數(shù)解析式,兩直線的交點(diǎn),折疊的性質(zhì),以及線段中點(diǎn)坐標(biāo)公式,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:拋物線數(shù)學(xué)公式的頂點(diǎn)為A(1,0)
(1)求F1的函數(shù)解析式;
(2)如圖,直線數(shù)學(xué)公式交x軸于點(diǎn)C,交y軸于點(diǎn)D,在拋物線F1上有一點(diǎn)B,且點(diǎn)B與點(diǎn)A關(guān)于直線數(shù)學(xué)公式對(duì)稱,若拋物線F2的頂點(diǎn)為點(diǎn)B,且經(jīng)過(guò)點(diǎn)A,試求拋物線F2的函數(shù)解析式;
(3)將(2)中求得的拋物線F2向左平移n個(gè)單位得拋物線F3,拋物線F3的頂點(diǎn)為點(diǎn)P,是否存在n使得tan∠BAP=數(shù)學(xué)公式?若存在試求n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省恩施州利川市東城初中九年級(jí)(上)入學(xué)選拔考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線交x軸于點(diǎn)A,交直線于點(diǎn)B(2,m).矩形CDEF的邊DC在x軸上,D在C的左側(cè),EF在x軸的上方,DC=2,DE=4.當(dāng)點(diǎn)C的坐標(biāo)為(-2,0)時(shí),矩形CDEF開始以每秒2個(gè)單位的速度沿x軸向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求b、m的值;
(2)矩形CDEF運(yùn)動(dòng)t秒時(shí),直接寫出C、D兩點(diǎn)的坐標(biāo);(用含t的代數(shù)式表示)
(3)當(dāng)點(diǎn)B在矩形CDEF的一邊上時(shí),求t的值;
(4)設(shè)CF、DE分別交折線OBA于M、N兩點(diǎn),當(dāng)四邊形MCDN為直角梯形時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年吉林省長(zhǎng)春市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,直線交x軸于點(diǎn)A,交直線于點(diǎn)B(2,m).矩形CDEF的邊DC在x軸上,D在C的左側(cè),EF在x軸的上方,DC=2,DE=4.當(dāng)點(diǎn)C的坐標(biāo)為(-2,0)時(shí),矩形CDEF開始以每秒2個(gè)單位的速度沿x軸向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求b、m的值;
(2)矩形CDEF運(yùn)動(dòng)t秒時(shí),直接寫出C、D兩點(diǎn)的坐標(biāo);(用含t的代數(shù)式表示)
(3)當(dāng)點(diǎn)B在矩形CDEF的一邊上時(shí),求t的值;
(4)設(shè)CF、DE分別交折線OBA于M、N兩點(diǎn),當(dāng)四邊形MCDN為直角梯形時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市通州區(qū)九年級(jí)中考適應(yīng)性考試(一模)數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,直線交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.

(1)求b的值;

(2)若點(diǎn)P是線段AB中垂線上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形.若存在,試直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;

(3)點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案