已知:如圖,直線交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.

(1)求b的值;

(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形.若存在,試直接寫出所有符合條件的點P的坐標(biāo);若不存在,試說明理由;

(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

 

【答案】

(1)4;(2),,;(3)

【解析】

試題分析:(1)先求得OB、OC的長,再由AO=BO可得點A的坐標(biāo),再根據(jù)三角形的面積公式求解;

(2)題目中沒有明確直角,故要分情況討論,再結(jié)合直角三角形的性質(zhì)求解即可;

(3)設(shè)正方形QEFG與AC相交于點M,先求得,在Rt△AOC中,根據(jù)勾股定理可求得AC的長,由EQ∥AC可得,即可表示出的長,證得△QMA為等腰直角三角形,可得QM=,當(dāng)時,正方形QEFG的邊FG恰好與AC共線,此時,解得,再分當(dāng)0<m≤<m<6兩種情況分析即可.

(1)由題意得:B(,0),C(0,b)

∴OB=,OC=b

∵AO=BO

∴A(b,0).

∴OA=b,AB=b+=

解得:b1=4,b2=-4(舍去)

∴b=4;

(2),,,;

(3)如圖,設(shè)正方形QEFG與AC相交于點M.

在Rt△AOC中

∵EQ∥AC

∵EQ∥AC

∴∠AMQ=∠EQM=90°,∠MAQ=45°

∴△QMA為等腰直角三角形

∴QM=

當(dāng)時,正方形QEFG的邊FG恰好與AC共線

此時,解得

當(dāng)0<m≤時,

當(dāng)<m<6時,

∴S與m之間的函數(shù)關(guān)系式為.

考點:動點的綜合題

點評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直線交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作于D.

1.求證:CD為⊙O的切線;

2.若DC+DA=6,⊙O的直徑為10,求AB的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省湖州市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O(shè)1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O(shè)1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O(shè)1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

同步練習(xí)冊答案