【題目】如圖,正方形ABCD的邊長為4厘米,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB邊由AB1厘米/秒的速度勻速移動(dòng)(點(diǎn)P不與點(diǎn)A、B重合),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿拆線BC-CD2厘米/秒的速度勻速移動(dòng)。點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)P停止運(yùn)動(dòng),點(diǎn)Q也隨之停止。聯(lián)結(jié)AQBD于點(diǎn)E。設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒。

(1)t表示線段PB的長;

(2)當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng)時(shí),t為何值時(shí),∠BEP和∠BEQ相等;

(3)當(dāng)t為何值時(shí),線段P、Q之間的距離為2cm.

【答案】(1)PB=4-t;(2)t=;(3)t=2;

【解析】

(1)根據(jù)正方形的性質(zhì)和已知條件即可求解;(2)由正方形的性質(zhì)得出∠PBE=∠QBE,再證明△BEP≌△BEQ,根據(jù)全等三角形的性質(zhì)可得BP=BQ,即可得出方程4-t=2t,解方程即可求得t值;(3)分兩種情況討論:①當(dāng)時(shí)和②當(dāng)時(shí),根據(jù)已知條件,利用勾股定理得出方程,解方程即可求得t的值.

(1)PB=AB-AP,

∵AB=4,AP=1×t=t,

∴PB=4-t.

(2)當(dāng)t=時(shí),∠BEP和∠BEQ相等,理由如下:

∵四邊形ABCD正方形,

對(duì)角線BD平分∠ABC,

PBE=∠QBE,

當(dāng)∠BEP=∠BEQ 時(shí),

在△BEP和△BEQ,

∴△BEP≌△BEQ,

∴BP=BQ,

4-t=2t,

解得t=

(3)分兩種情況討論

①當(dāng) 時(shí),即當(dāng)P點(diǎn)在AB,Q點(diǎn)在BC上運(yùn)動(dòng)時(shí),

連接PQ,如圖1所示

根據(jù)勾股定理得

解得t=2t=(負(fù)值舍去);

②當(dāng) 時(shí),即當(dāng)P點(diǎn)在AB,Q點(diǎn)在CD上運(yùn)動(dòng)時(shí),

PM⊥CDM,如圖2所示:

∴PM=BC=4,CM=BP=4-t,MQ=2t-4-(4-t)=3t-8,

根據(jù)勾股定理得,

解得t=2(舍去)或t=;

綜上,當(dāng)t=2t=時(shí),PQ之間的距離為2cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對(duì)正方形紙片ABCD進(jìn)行如下操作:
(i)過點(diǎn)D任作一條直線與BC邊相交于點(diǎn)E1(如圖①),記∠CDE11;
(ii)作∠ADE1的平分線交AB邊于點(diǎn)E2(如圖②),記∠ADE22;
(iii)作∠CDE2的平分線交BC邊于點(diǎn)E3(如圖③),記∠CDE33;
按此作法從操作(2)起重復(fù)以上步驟,得到α1 , α2 , …,αn , …,現(xiàn)有如下結(jié)論:①當(dāng)α1=10°時(shí),α2=40°;②2α43=90°; ③當(dāng)α5=30°時(shí),△CDE9≌△ADE10;④當(dāng)α1=45°時(shí),BE2=
其中正確的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上,△ABC的頂點(diǎn)A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點(diǎn)B(1,3),將△ABC以點(diǎn)B為旋轉(zhuǎn)中心順時(shí)針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖像恰好過點(diǎn)D,則k的值為( )

A.6
B.﹣6
C.9
D.﹣9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生活經(jīng)驗(yàn)表明,靠墻擺放梯子時(shí),若梯子底端離墻的距離約為梯子長度的,則梯子比較穩(wěn)定,如圖,AB為一長度為6米的梯子.

(1)當(dāng)梯子穩(wěn)定擺放時(shí),它的頂端能達(dá)到5.7米高的墻頭嗎?

(2)如圖2,若梯子底端向左滑動(dòng)(3﹣2)米,那么梯子頂端將下滑多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評(píng)估活動(dòng),以“我最喜愛的書籍”為主題,對(duì)學(xué)生最喜愛的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛科普類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺(tái)階.下圖是其中的甲、乙兩段臺(tái)階路的示意圖.請(qǐng)你用所學(xué)過的有關(guān)統(tǒng)計(jì)知識(shí)(平均數(shù)、中位數(shù)、方差和極差)回答下列問題:

(1)兩段臺(tái)階路有哪些相同點(diǎn)和不同點(diǎn)?

(2)哪段臺(tái)階路走起來更舒服?為什么?

(3)為方便游客行走,需要重新整修上山的小路.對(duì)于這兩段臺(tái)階路,在臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.

圖中的數(shù)字表示每一級(jí)臺(tái)階的高度(單位:cm),并且數(shù)據(jù)15,16,16,14,14,15的方差s2,數(shù)據(jù)11,15,18,17,10,19的方差s2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過點(diǎn)E(0,﹣2)且平行于x軸,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.

(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí) + 的值;
②試說明無論k取何值, + 的值都等于同一個(gè)常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△AOB中,∠AOB=90°,AO=6厘米,BO=8厘米,分別以O(shè)B和OA所在直線為x軸,y軸建立平面直角坐標(biāo)系,如圖所示,動(dòng)點(diǎn)M從點(diǎn)A開始沿AO方向以2厘米/秒的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)O開始沿OB方向以4厘米/秒的速度向點(diǎn)B移動(dòng)(其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨即停止移動(dòng)).

(1)求過點(diǎn)A和點(diǎn)B的直線表達(dá)式;
(2)當(dāng)點(diǎn)M移動(dòng)多長時(shí)間時(shí),四邊形AMNB的面積最。坎⑶蟪鏊倪呅蜛MNB面積的最小值;
(3)在點(diǎn)M和點(diǎn)N移動(dòng)的過程中,是否存在以O(shè),M,N為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出點(diǎn)M 和點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化建設(shè)中,某學(xué)校原計(jì)劃按每班5幅訂購了“名人字畫”共90幅.由于新學(xué)期班數(shù)增加,決定從閱覽室中取若干幅“名人字畫”一起分發(fā),如果每班分4幅,則剩下17幅;如果每班分5幅,則最后一班不足3幅,但不少于1幅.
(1)該校原有的班數(shù)是多少個(gè)?
(2)新學(xué)期所增加的班數(shù)是多少個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案