【題目】已知,OM和ON分別平分∠AOC和∠BOC.
(1)如圖:若C為∠AOB內(nèi)一點(diǎn),探究∠MON與∠AOB的數(shù)量關(guān)系;
(2)若C為∠AOB外一點(diǎn),且C不在OA、OB的反向延長(zhǎng)線上,請(qǐng)你畫出圖形,并探究∠MON與∠AOB的數(shù)量關(guān)系.
【答案】(1)∠MON=∠AOB;(2)∠MON=∠AOB,或∠MON=180°﹣∠AOB.
【解析】
(1)根據(jù)角平分線的性質(zhì)利用等量代換求出∠MON與∠AOB的數(shù)量關(guān)系(2)利用角平分線的性質(zhì)結(jié)合分類思想分別畫圖探究∠MON與∠AOB的數(shù)量關(guān)系.
解:(1)∵OM和ON分別平分∠AOC和∠BOC,
∴∠MOC=∠AOC,∠NOC=∠BOC,
∴∠MOC+∠NOC=∠AOC+∠BOC=∠AOB,
即∠MON=∠AOB;
(2)如圖1,∵OM和ON分別平分∠AOC和∠BOC,
∴∠MOC=∠AOC,∠NOC=∠BOC,
∴∠MOC﹣∠NOC=AOC﹣∠BOC=∠AOB,
即∠MON=∠AOB;
如圖2,∵OM和ON分別平分∠AOC和∠BOC,
∴∠MOC=∠AOC,∠NOC=∠BOC,
∴∠NOC﹣∠MOC=∠BOC﹣∠AOC=∠AOB,
即∠MON=∠AOB;
如圖3,∵OM和ON分別平分∠AOC和∠BOC,
∴∠MOC=∠AOC,∠NOC=∠BOC,
∴∠MOC+∠NOC=∠AOC+∠BOC=(360°﹣∠AOB)
即∠MON=180°﹣∠AOB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.
(1)該店每天賣出這兩種菜品共多少份?
(2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣1份;B種菜品售價(jià)每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù) (x<0)與y=ax+b的圖象交于點(diǎn)A(-1,n)和B(-2,1),直線y=mx與 (x<0)的圖象交于點(diǎn)P,與y=-x+1的圖象交于點(diǎn)Q,定義∠PAQ為這個(gè)函數(shù)的“函數(shù)角”.
(1)求k,a,b的值;
(2)當(dāng)m=-時(shí),求這個(gè)函數(shù)的“函數(shù)角”的度數(shù).
(3)若射線AP與x軸交于點(diǎn)N(a,0),當(dāng)這個(gè)函數(shù)的“函數(shù)角”的度數(shù)不小于120°時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2,……按照此規(guī)律繼續(xù)下去,則S2019的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線 與軸交于點(diǎn)C,與軸交于點(diǎn)B,與反比例函數(shù)的圖象在第一象限交于點(diǎn)A,連接OA,若,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊CD的中點(diǎn).
(1)用直尺和圓規(guī)作⊙O,使⊙O經(jīng)過點(diǎn)A、B、E(保留作圖痕跡,不寫作法);
(2)若正方形ABCD的邊長(zhǎng)為2,求(1)中所作⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若任意一個(gè)三位數(shù)t的百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c,那么可將這個(gè)三位數(shù)表示為t=(a≠0),且滿足t=100a+10b+c,我們把三位數(shù)各位上的數(shù)字的乘積叫做原數(shù)的積數(shù),記為P(t).重新排列一個(gè)三位數(shù)各位上的數(shù)字,必可以得到一個(gè)最大的三位數(shù)和一個(gè)最小的三位數(shù),此最大三位數(shù)與最小三位數(shù)之差叫做原數(shù)的差數(shù),記為F(t),例如:264的積數(shù)P(264)=48,差數(shù)F(264)=642﹣246=396.
(1)根據(jù)以上材料:F(258)= ;
(2)若一個(gè)三位數(shù)t=,且P(t)=0,F(t)=135,求這個(gè)三位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ACM的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com