【題目】觀察下列各式:13=1=;13+23=9=;13+23+33=36=;13+23+33+43=100=,

回答下面的問題:

(1)13+23+33+43+…+103=_____(寫出算式即可);

(2)計算13+23+33+…+993+1003的值;

(3)計算:113+123+…+993+1003的值.

【答案】(1);(2) 25502500;(3) 25499475

【解析】

(1)(2)由題意可知:從1開始連續(xù)自然數(shù)的立方和,等于最后一個自然數(shù)的平方乘這個自然數(shù)加1的平方的,由此規(guī)律計算得出答案即可;
(3)由(2)的結(jié)果減去(1)的結(jié)果即可.

(1)13+23+33+43+…+103=×102×112;

(2) 13+23+33+…+993+1003=×1002×1012=25502500;

(3) ×1002×1012×102×112=255025003025=25499475.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E,連接CD.
(1)求證:DE為⊙O的切線;
(2)若AB=4 ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

A、B、C為數(shù)軸上三點,若點CA的距離是點CB的距離2倍,我們就稱點C是【A,B】的好點.

如圖1,點A表示的數(shù)為﹣1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是【A,B】的好點.

知識運用:

(1)如圖1,表示0的點D到點A的距離是1,到點B的距離是2,那么點D 【A,B】的好點;(請在橫線上填是或不是

(2)如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為4,點N所表示的數(shù)為﹣2.?dāng)?shù) 所對應(yīng)的點是【M,N】的好點(寫出所有可能的情況);

拓展提升:

(3)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣20,點B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點B出發(fā),以4個單位每秒的速度向左運動,到達點A停止.當(dāng)經(jīng)過幾秒時,P、AB中恰有一個點為其余兩點的好點?(寫出所有情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上兩點 A、B 所表示的數(shù)分別為 a b,且滿足|a3|(b9)20180O 為原點.

(1) 試求 a b 的值

(2) C O 點出發(fā)向右運動,經(jīng)過 3 秒后點 C A 點的距離是點 C B 點距離的 3 倍,求點 C 的運動速 度?

(3) D 1 個單位每秒的速度從點 O 向右運動,同時點 P 從點 A 出發(fā)以 5 個單位每秒的速度向左運動, 點 Q 從點 B 出發(fā),以 20 個單位每秒的速度向右運動.在運動過程中,M、N 分別為 PDOQ 的中點,問的值是否發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)
.
(2)解分式方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.

(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個平行四邊形的面積一定可以表示為( )

A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分已知:如圖,在ABC中AB=AC,ADBC,垂足為D,AN是ABC外角CAM的平分線,CEAN,垂足為E,猜想四邊形ADCE的形狀,并給予證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)中y=ax2+bx﹣3的x、y滿足表:

x

﹣1

0

1

2

3

y

0

﹣3

﹣4

﹣3

m


(1)求該二次函數(shù)的解析式;
(2)求m的值并直接寫出對稱軸及頂點坐標.

查看答案和解析>>

同步練習(xí)冊答案