【題目】如圖,ABCD是矩形紙片,翻折∠B、∠D,使BC、AD恰好落在AC上.設(shè)F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點.
(1)求證:四邊形AECG是平行四邊形:
(2)若AB=8cm,BC=6cm,求線段EF的長.
【答案】(1)證明見解析;(2)EF=3cm.
【解析】
(1)根據(jù)矩形的性質(zhì)和折疊的性質(zhì)求得AB∥CD,AG∥CE,即可證明四邊形AECG是平行四邊形;
(2)根據(jù)勾股定理求出AC的長,再根據(jù)CF=BC求出AF的長,設(shè)EF=BE=x,則AE=8﹣x,由勾股定理得EF2+AF2=AE2,代入求出x的值即可.
(1)∵四邊形ABCD是矩形,
∴AB∥CD,AD∥BC,
∴∠DAC=∠BCA.
由折疊可知∠1,∠2,
∴∠1=∠2,
∴AG∥CE,
又∵AE∥CG,
∴四邊形AECG是平行四邊形;
(2)在Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,
由勾股定理可得:AC10,
又∵CF=BC,
則AF=AC﹣CF=4.
設(shè)EF=BE=x,則AE=8﹣x,
在Rt△AFE中,由勾股定理得EF2+AF2=AE2,
即x2+42=(8﹣x)2,
解得:x=3,
即EF=3cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=15.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.
(1)求證;四邊形PBEC是平行四邊形;
(2)填空:
①當(dāng)AP的值為 時,四邊形PBEC是矩形;
②當(dāng)AP的值為 時,四邊形PBEC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+1與反比例函數(shù)y=(m≠0)相交于A、B兩點,與x軸,y軸分別交于D、C兩點,已知sin∠CDO=,△BOD的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)連接OA,OB,點M是線段AB的中點,直線OM向上平移h(h>0)個單位將△AOB的面積分成1:7兩部分,求h的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,,是邊上一動點,由向運動(與、不重合),是延長線上一動點,與點同時以相同的速度由向延長線方向運動(不與重合),過作于,連接交于.
(1)證明:在運動過程中,點是線段的中點;
(2)當(dāng)時,求的長;
(3)在運動過程中線段的長是否發(fā)生變化?如果不變,求出線段的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與應(yīng)用:
閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當(dāng)a=b時取等號).
閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng)即時,函數(shù)的最小值為.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時,周長的最小值為__________.
問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時, 的最小值為__________.
問題3:某民辦學(xué)習(xí)每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費每人10元;三是其他費用.其中,其他費用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學(xué)生人數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D、E分別是AB和BC上的點.把△ABC沿著直線DE折疊,頂點B對應(yīng)點是點B′
(1)如圖1,點B′恰好落在線段AC的中點處,求CE的長;
(2)如圖2,點B′落在線段AC上,當(dāng)BD=BE時,求B′C的長;
(3)如圖3,E是BC的中點,直接寫出AB′的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點A測得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎低端C的距離DC是20米,梯坎坡長BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個,小穎做摸球?qū)嶒灒龑⒑凶永锩娴那驍噭蚝髲闹须S機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 278 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計當(dāng)很大時,摸到白球的頻率將會接近 (精確到0.1);
(2)假如摸一次,摸到黑球的概率 ;
(3)試估算盒子里黑顏色的球有多少只.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com