【題目】綜合與實踐

旋轉(zhuǎn)是圖形變化的方法之一,借助旋轉(zhuǎn)知識可以解決線段長、角的大小、取值范圍、判斷三角形形狀等問題,在實際生活中也有著十分重要的地位和作用.

問題背景

一塊等邊三角形建筑材料內(nèi)一點到三角形三個頂點的距離滿足一定條件時,我們可以用所學(xué)的知識幫助工人師傅在沒有刻度尺的情況下求出等邊三角形的邊長.

數(shù)學(xué)建模

如圖,等邊三角形內(nèi)有一點,已知,,.

問題解決

1)如圖,將ABP繞點順時針旋轉(zhuǎn)60°得到CBP′,連接,易證∠BP′P=__°,____為等邊三角形,____,___°.

2)點H為直線BP′上的一個動點,則的最小值為______;

3)求長;

拓展延伸

己知:點在正方形內(nèi),點在平面內(nèi),,.

4)在圖中,連接PAPC、PQQC,,若點、在一條直線上,則____.

5)若,連接,則____________;連接,當(dāng)、、三點在同一條直線上時,△BDQ的面積為______.

【答案】160°,△BPP,∠CPP,150;(2;(3;(4;(5,

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BP=BP′,∠PBP′=60°,AP=P′C,∠APB=BP′C,即可求出∠BP′P=60°,即可得BP′P是等邊三角形,根據(jù)勾股定理的逆定理可得∠CP′P=90°,即可得∠CP′B的度數(shù),根據(jù)旋轉(zhuǎn)性質(zhì)可得∠APB=CP′B,即可得∠APB的度數(shù);(2)過CCHBP′,交BP′的延長線于H,根據(jù)含30°角的直角三角形的性質(zhì)求出CH的值即為最小值;(3)利用勾股定理可求出HP′的長,即可得BH的長,利用勾股定理求出BC的長進而可得答案;(4)由等腰直角三角形的性質(zhì)可得∠BPQ=BQP=45°PQ=,根據(jù)兩銳角互余的關(guān)系可得∠CBQ=ABP,利用SAS可證明ABPCBQ,進而可得PA=CQ,∠BQC=BPA=135°,可得∠PQC=90°,利用勾股定理可求出PC的長,根據(jù)余弦的定義即可得答案;(5)連接BD,以B為圓心,1為半徑畫圓,交BDP,交AB、BCE、F,連接DF,則OP為最小值,根據(jù)正方形的性質(zhì)及勾股定理求出DP、DF的值即可;當(dāng)D、P、Q在同一條直線上時,過BBMDQ,根據(jù)等腰直角三角形的性質(zhì)可得BM=QM=PQ,利用勾股定理可求出DM的長,進而可得DQ的長,利用三角形面積公式即可得答案.

1)∵ABP繞點順時針旋轉(zhuǎn)60°得到CBP′,

BP=BP′=4,∠PBP′=60°AP=P′C=2,∠APB=BP′C,

∴∠BP′P=60°,

BP′P是等邊三角形,

PP′=BP=4,

PC2=(2)2=28,PP′2=42=16,P′C2=(2)2=12

PC2= PP′2+ P′C2,

PP′C是直角三角形,∠CP′P=90°

∴∠BP′C=CP′P+BP′P=90°+60°=150°,

∴∠APB=BP′C=150°

故答案為:60°,BP′P,∠CP′P,150°

2)過CCHBP′,交BP′的延長線于H,

∵∠BP′C=150°,

∴∠P′HC=180°-150°=30°

CH=P′C=,

故答案為:

3)∵CH=P′C=PA=2,

P′H==3

BC===2,

AB=BC=2.

4)∵BP=BQ=1BQBP,

∴∠BPQ=BQP=45°,PQ=

∴∠APB=135°,

∵∠ABP+PBC=90°,∠CBQ+PBC=90°,

∴∠ABP=CBQ

AB=BC,∠ABP=CBQBQ=BP,

ABPCBQ

QC=AP=,∠BQC=APB=135°,

∴∠PQC=90°,

PC==,

cosPCQ===,

故答案為:

5)如圖,連接BD,以B為圓心,1為半徑畫圓,交BDP,交ABBCE、F,連接DF

BP=1,

∴點P在以B為圓心,1為半徑的圓上,

DP為最小值,

AB=AD=2

BD=2,

DP=BD-BP=2-1,

BF=1CD=2,

DF=

∵點P在正方形內(nèi),

2-1≤DP<,

如圖,當(dāng)D、P、Q在同一條直線上時,過BBMDQ,

BQ=BP=1,BQBP,

BM=QM=PQ=

DM==,

DQ=DM+QM=+=,

SBDQ=××=,

故答案為:2-1,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, ,,直線經(jīng)過點.設(shè),于點,將射線繞點按逆時針方向旋轉(zhuǎn),與直線交于點.

(1)當(dāng), ;

(2)求證:

(3)的外心在其內(nèi)部,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCDAB=,BC=1,將矩形ABCD繞頂點B旋轉(zhuǎn)得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】主題班會上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學(xué)們的一番熱議,達成以下四個觀點:

A.放下自我,彼此尊重; B.放下利益,彼此平衡;

C.放下性格,彼此成就; D.合理競爭,合作雙贏.

要求每人選取其中一個觀點寫出自己的感悟.根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:

 觀點

頻數(shù) 

頻率 

 A

 a

 0.2

 B

 12

 0.24

 C

 8

 b

 D

 20

 0.4

(1)參加本次討論的學(xué)生共有   人;表中a   ,b   

(2)在扇形統(tǒng)計圖中,求D所在扇形的圓心角的度數(shù);

(3)現(xiàn)準(zhǔn)備從A,B,CD四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的邊AB=6,BC=12,點P為矩形ABCD邊上一點,連接AP,若線段AP、BD交點為點H,PAB為等腰三角形,則AH的長為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MAN=90°,點C在邊AM上,AC=4,點B為邊AN上一動點,連接BC,A′BCABC關(guān)于BC所在直線對稱,點D,E分別為AC,BC的中點,連接DE并延長交A′B所在直線于點F,連接A′E.當(dāng)A′EF為直角三角形時,AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+6x+cx軸于A,B兩點,交y軸于點C.直線y=x﹣5經(jīng)過點B,C.

(1)求拋物線的解析式;

(2)過點A的直線交直線BC于點M.

①當(dāng)AMBC時,過拋物線上一動點P(不與點B,C重合),作直線AM的平行線交直線BC于點Q,若以點A,M,P,Q為頂點的四邊形是平行四邊形,求點P的橫坐標(biāo);

②連接AC,當(dāng)直線AM與直線BC的夾角等于∠ACB2倍時,請直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=6cm,BC=8cm,點D從點A出發(fā)以1cm/s的速度運動到點C停止.作DEAC交邊ABBC于點E,以DE為邊向右作正方形DEFG.設(shè)點D的運動時間為t(s).

(1)求AC的長.

(2)請用含t的代數(shù)式表示線段DE的長.

(3)當(dāng)點F在邊BC上時,求t的值.

(4)設(shè)正方形DEFGABC重疊部分圖形的面積為S(cm2),當(dāng)重疊部分圖形為四邊形時,求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在金融危機的影響下,國家采取擴大內(nèi)需的政策,基建投資成為拉動內(nèi)需最強有力的引擎.現(xiàn)金強公司中標(biāo)一項工程,在甲、乙兩地施工,其中甲地需推土機30臺,乙地需推土機26臺,公司在A、B兩地分別庫存推土機32臺和24臺,現(xiàn)從A地運一臺到甲、乙兩地的費用分別是400元和300元,從B地運一臺到甲、乙兩地的費用分別為200元和500元.若設(shè)從A地運往甲地臺推土機,運甲、乙兩地所需的這批推土機的總費用為元.

(1)求的函數(shù)關(guān)系式;

(2)公司應(yīng)設(shè)計怎樣的方案,能使運送這批推土機的總費用最少?

查看答案和解析>>

同步練習(xí)冊答案