【題目】如圖,四邊形是矩形,為原點(diǎn),的坐標(biāo)分別為、是邊上的一個(gè)動(dòng)點(diǎn)(不與,重合),過點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

當(dāng)時(shí),寫出點(diǎn)的坐標(biāo);

的值;

是否存在這樣的點(diǎn),使得將沿對折后,點(diǎn)恰好落在上?若存在,求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】(1),;(2);(3) 存在符合條件的點(diǎn),它的坐標(biāo)為

【解析】

(1)根據(jù)題意可知E的縱坐標(biāo)為4,F(xiàn)的橫坐標(biāo)為6,分別代入y=,即可求得E、F的坐標(biāo);

(2)根據(jù)反比例函數(shù)的性質(zhì)得出,xy=k,即可得出AEAO=BFBO,從而得出,進(jìn)而求得

(3)設(shè)折疊之后C點(diǎn)在OB上的對稱點(diǎn)為C',連接C'E、C'F,過EEG垂直于OB于點(diǎn)G,則根據(jù)折疊性質(zhì)、相似三角形、勾股定理得出即可.

解:當(dāng)時(shí),則

反比例函數(shù)的圖象經(jīng)過點(diǎn)、

、的坐標(biāo)分別為、

的縱坐標(biāo)為,的橫坐標(biāo)為,

,;

根據(jù)反比例函數(shù)的性質(zhì)得出,

,

,

,,

,

,

;

設(shè)存在這樣的點(diǎn),將沿對折后,點(diǎn)恰好落在邊上的點(diǎn),

過點(diǎn),垂足為

由題意得:,

代入得:,把代入得:,

,

,

,

,

,

解得,

,

存在符合條件的點(diǎn),它的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的中,,,動(dòng)點(diǎn)、分別以的速度從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)向點(diǎn)移動(dòng).

(1)若點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止,點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),問經(jīng)過時(shí)兩點(diǎn)之間的距離是多少?

(2)若點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止,點(diǎn)隨之停止移動(dòng),點(diǎn)分別從點(diǎn)、同時(shí)出發(fā),問經(jīng)過多長時(shí)間、兩點(diǎn)之間的距離是?

(3)若點(diǎn)沿著移動(dòng),點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止時(shí),點(diǎn)隨之也停止移動(dòng),試探求經(jīng)過多長時(shí)間的面積為2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)(x+1)(x7)0

(2)x24x+30

(3)2x24x+50

(4)x23x10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時(shí),求BAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,點(diǎn)分別在,上,且為等邊三角形,下列結(jié)論:

;②;③;④

其中正確的結(jié)論個(gè)數(shù)有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,如果,則四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按如圖擺放(點(diǎn)重合),點(diǎn)、、在同一條直線上.已知:,,,.如圖,從圖的位置出發(fā),以的速度沿勻速移動(dòng),在移動(dòng)的同時(shí),點(diǎn)的頂點(diǎn)出發(fā),以的速度沿向點(diǎn)勻速移動(dòng);當(dāng)點(diǎn)移動(dòng)到點(diǎn)時(shí),點(diǎn)停止移動(dòng),也隨之停止移動(dòng).交于點(diǎn),連接,設(shè)移動(dòng)時(shí)間為

用含的代數(shù)式表示線段的長,并寫出的取值范圍;

當(dāng)為何值時(shí),是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB45°.點(diǎn)D(與點(diǎn)B、C不重合)為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點(diǎn)D在線段BC上運(yùn)動(dòng).試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動(dòng).(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC4,BC3CDx,求線段CP的長.(用含x的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,EAB邊的中點(diǎn),DEAC于點(diǎn)F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結(jié)論:

只有一對相似三角形

②EFED=12

③S1S2S3S4=1245

其中正確的結(jié)論是(  )

A①③ B C D①②

查看答案和解析>>

同步練習(xí)冊答案